383 research outputs found
Efficient chaining of seeds in ordered trees
We consider here the problem of chaining seeds in ordered trees. Seeds are
mappings between two trees Q and T and a chain is a subset of non overlapping
seeds that is consistent with respect to postfix order and ancestrality. This
problem is a natural extension of a similar problem for sequences, and has
applications in computational biology, such as mining a database of RNA
secondary structures. For the chaining problem with a set of m constant size
seeds, we describe an algorithm with complexity O(m2 log(m)) in time and O(m2)
in space
Improvement of dairy production to satisfy the growing consumer demand in sub-Saharan Africa. A conceptual framework for research
This document is based on the deliberations and outputs of two ILCA in-house workshops held in 1992, and of numerous individual contributions by ILCA scientists. This work has similarities with the ILCA project on smallholder market-oriented dairying. Factors influencing development of market-oriented smallholder dairying in SSA, and factors affecting farm productivity in dairying are listed. The objectives and methods of the four phases, viz, typification of dairy system, characterization of a specific dairy system, seeking ways to enhance the development of specific dairy systems and cross-site synthesis are described
The Frequency Dependent Conductivity of Electron Glasses
Results of DC and frequency dependent conductivity in the quantum limit, i.e.
hw > kT, for a broad range of dopant concentrations in nominally uncompensated,
crystalline phosphorous doped silicon and amorphous niobium-silicon alloys are
reported. These materials fall under the general category of disordered
insulating systems, which are referred to as electron glasses. Using microwave
resonant cavities and quasi-optical millimeter wave spectroscopy we are able to
study the frequency dependent response on the insulating side of the
metal-insulator transition. We identify a quantum critical regime, a Fermi
glass regime and a Coulomb glass regime. Our phenomenological results lead to a
phase diagram description, or taxonomy, of the electrodynamic response of
electron glass systems
Large Deviations for Random Trees
We consider large random trees under Gibbs distributions and prove a Large
Deviation Principle (LDP) for the distribution of degrees of vertices of the
tree. The LDP rate function is given explicitly. An immediate consequence is a
Law of Large Numbers for the distribution of vertex degrees in a large random
tree. Our motivation for this study comes from the analysis of RNA secondary
structures.Comment: 10 page
Data Analysis Challenges for the Einstein Telescope
The Einstein Telescope is a proposed third generation gravitational wave
detector that will operate in the region of 1 Hz to a few kHz. As well as the
inspiral of compact binaries composed of neutron stars or black holes, the
lower frequency cut-off of the detector will open the window to a number of new
sources. These will include the end stage of inspirals, plus merger and
ringdown of intermediate mass black holes, where the masses of the component
bodies are on the order of a few hundred solar masses. There is also the
possibility of observing intermediate mass ratio inspirals, where a stellar
mass compact object inspirals into a black hole which is a few hundred to a few
thousand times more massive. In this article, we investigate some of the data
analysis challenges for the Einstein Telescope such as the effects of increased
source number, the need for more accurate waveform models and the some of the
computational issues that a data analysis strategy might face.Comment: 18 pages, Invited review for Einstein Telescope special edition of
GR
Gravitational Radiation from Compact Binary Pulsars
An outstanding question in modern Physics is whether general relativity (GR)
is a complete description of gravity among bodies at macroscopic scales.
Currently, the best experiments supporting this hypothesis are based on
high-precision timing of radio pulsars. This chapter reviews recent advances in
the field with a focus on compact binary millisecond pulsars with white-dwarf
(WD) companions. These systems - if modeled properly - provide an unparalleled
test ground for physically motivated alternatives to GR that deviate
significantly in the strong-field regime. Recent improvements in observational
techniques and advances in our understanding of WD interiors have enabled a
series of precise mass measurements in such systems. These masses, combined
with high-precision radio timing of the pulsars, result to stringent
constraints on the radiative properties of gravity, qualitatively very
different from what was available in the past.Comment: Short review chapter to appear in "Gravitational Wave Astrophysics"
by Springer-Verlag, edited by Carlos F. Sopuerta; v3: a few major corrections
and updated references. Comments are welcome
Effect of Lanadelumab Compared with Placebo on Prevention of Hereditary Angioedema Attacks : a Randomized Clinical Trial
Importance: Current treatments for long-term prophylaxis in hereditary angioedema have limitations. Objective: To assess the efficacy of lanadelumab, a fully human monoclonal antibody that selectively inhibits active plasma kallikrein, in preventing hereditary angioedema attacks. Design, Setting, and Participants: Phase 3, randomized, double-blind, parallel-group, placebo-controlled trial conducted at 41 sites in Canada, Europe, Jordan, and the United States. Patients were randomized between March 3, 2016, and September 9, 2016; last day of follow-up was April 13, 2017. Randomization was 2:1 lanadelumab to placebo; patients assigned to lanadelumab were further randomized 1:1:1 to 1 of the 3 dose regimens. Patients 12 years or older with hereditary angioedema type I or II underwent a 4-week run-in period and those with 1 or more hereditary angioedema attacks during run-in were randomized. Interventions: Twenty-six-week treatment with subcutaneous lanadelumab 150 mg every 4 weeks (n = 28), 300 mg every 4 weeks (n = 29), 300 mg every 2 weeks (n = 27), or placebo (n = 41). All patients received injections every 2 weeks, with those in the every-4-week group receiving placebo in between active treatments. Main Outcome and Measures: Primary efficacy end point was the number of investigator-confirmed attacks of hereditary angioedema over the treatment period. Results: Among 125 patients randomized (mean age, 40.7 years [SD, 14.7 years]; 88 females [70.4%]; 113 white [90.4%]), 113 (90.4%) completed the study. During the run-in period, the mean number of hereditary angioedema attacks per month in the placebo group was 4.0; for the lanadelumab groups, 3.2 for the every-4-week 150-mg group; 3.7 for the every-4-week 300-mg group; and 3.5 for the every-2-week 300-mg group. During the treatment period, the mean number of attacks per month for the placebo group was 1.97; for the lanadelumab groups, 0.48 for the every-4-week 150-mg group; 0.53 for the every-4-week 300-mg group; and 0.26 for the every-2-week 300-mg group. Compared with placebo, the mean differences in the attack rate per month were -1.49 (95% CI, -1.90 to -1.08; P <.001); -1.44 (95% CI, -1.84 to -1.04; P <.001); and -1.71 (95% CI, -2.09 to -1.33; P <.001). The most commonly occurring adverse events with greater frequency in the lanadelumab treatment groups were injection site reactions (34.1% placebo, 52.4% lanadelumab) and dizziness (0% placebo, 6.0% lanadelumab). Conclusions and Relevance: Among patients with hereditary angioedema type I or II, treatment with subcutaneous lanadelumab for 26 weeks significantly reduced the attack rate compared with placebo. These findings support the use of lanadelumab as a prophylactic therapy for hereditary angioedema. Further research is needed to determine long-term safety and efficacy. Trial Registration: EudraCT Identifier: 2015-003943-20; ClinicalTrials.gov Identifier: NCT02586805
Performance Issues in U.S.–China Joint Ventures
Based on an in-depth study of U.S.-China joint ventures, this article offers some insights into the performance of such international business relationships. While the conventional literature treats government as an amorphous aspea of the political-legal environment, in this case government is an active participant and influence in the performance of international joint ventures (UVs). It has both a constraining and enabling effect on LJV structure, strategy, and performance. For example, limits can be placed on ownership shares of joint ventures and on prices of the output. At the same time, government can cooperate with LJVs and foreign parent companies by creating partners for foreign parent companies, acting as major customers, and improving financial performance by lowering taxes
What Physical Processes Drive the Interstellar Medium in the Local Bubble?
Recent 3D high-resolution simulations of the interstellar medium in a star form-
ing galaxy like the Milky Way show that supernova explosions are the main driver of the
structure and evolution of the gas. Its physical state is largely controlled by turbulence due
to the high Reynolds numbers of the average flows. For a constant supernova rate a dynam-
ical equilibrium is established within 200 Myr of simulation as a consequence of the setup
of a galactic fountain. The resulting interstellar medium reveals a typical density/pressure
pattern, i.e. distribution of so-called gas phases, on scales of 500–700 pc, with interstellar
bubbles being a common phenomenon just like the Local Bubble and the Loop I superbub-
ble, which are assumed to be interacting. However, modeling the Local Bubble is special,
because it is driven by a moving group, passing through its volume, as it is inferred from
the analysis of Hipparcos data. A detailed analysis reveals that between 14 and 19 super-
novae have exploded during the last 15 Myr. The age of the Local Bubble is derived from
comparison with HI and UV absorption line data to be 14.5±0.7
Myr. We further predict the
0.4merging of the two bubbles in about 3 Myr from now, when the interaction shell starts to
fragment. The Local Cloud and its companion HI clouds are the consequence of a dynamical
instability in the interaction shell between the Local and the Loop I bubble
Learning from multimedia and hypermedia
Computer-based multimedia and hypermedia resources (e.g., the world wide web) have become one of the primary sources of academic information for a majority of pupils and students. In line with this expansion in the field of education, the scientific study of learning from multimedia and hypermedia has become a very active field of research. In this chapter we provide a short overview with regard to research on learning with multimedia and hypermedia. In two review sections, we describe the educational benefits of multiple representations and of learner control, as these are the two defining characteristics of hypermedia. In a third review section we describe recent scientific trends in the field of multimedia/hypermedia learning. In all three review sections we will point to relevant European work on multimedia/hypermedia carried out within the last 5 years, and often carried out within the Kaleidoscope Network of Excellence. According to the interdisciplinary nature of the field this work might come not only from psychology, but also from technology or pedagogy. Comparing the different research activities on multimedia and hypermedia that have dominated the international scientific discourse in the last decade reveals some important differences. Most important, a gap seems to exist between researchers mainly interested in a “serious” educational use of multimedia/ hypermedia and researchers mainly interested in “serious” experimental research on learning with multimedia/hypermedia. Recent discussions about the pros and cons of “design-based research” or “use-inspired basic research” can be seen as a direct consequence of an increasing awareness of the tensions within these two different cultures of research on education
- …