16 research outputs found

    Glass-ceramics: Their production from wastes-a review

    No full text

    Overexpression of RIPK4 Predicts Poor Prognosis and Promotes Metastasis in Ovarian Cancer

    No full text
    This study was conducted to evaluate the prognostic value of receptor-interacting protein kinase 4 (RIPK4) in ovarian cancer (OC) and its role in tumorigenesis. RNA expression and the corresponding clinical data were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The relationship between clinical-pathological characteristics and RIPK4 expression was analyzed using the Wilcoxon signed-rank test and logistic regression. The Cox regression and the Kaplan-Meier method were used to evaluate the relationship between clinicopathological features and overall survival (OS). Gene set enrichment analysis (GSEA) was performed using Molecular Signatures Database. Scratch assay, transwell assay, and cell transfection were used to verify the function of RIPK4. Overexpression of RIPK4 was associated with the stage of OC and distant metastasis. Survival analysis revealed that patients with OC and higher expression of RIPK4 had a poorer prognosis. Univariate and multivariate analyses indicated that high expression of RIPK4 was associated with poor OS, as well as age and stage of OC. The areas under the curve (AUC) at 1, 4, and 8 years were 0.737, 0.634, and 0.669, respectively, according to the established OS prediction model. GSEA revealed that adherens junction, cadherin binding, and Wnt signaling pathway were enriched in the high RIPK4 expression group. Cell transfection confirmed RIPK4 was involved in the Wnt signaling pathway. RIPK4 can act as a potential prognostic molecular marker for poor survival in OC. Moreover, RIPK4 is associated with tumor metastasis and implicated in the regulation of the Wnt signaling pathway

    A High-Precision Multi-Beam Optical Measurement Method for Cylindrical Surface Profile

    No full text
    To automatically measure the surface profile of a cylindrical workpiece, a high-precision multi-beam optical method is proposed in this paper. First, some successive images for the cylindrical workpiece’s surface are acquired by a multi-beam angle sensor under different light directions. Then, the light directions are estimated based on the feature regions in the images to calculate surface normal vectors. Finally, according to the relationship of the surface normal vector and the vertical section of the workpiece’s surface, a depth map is reconstructed to achieve the curvature surface, which can be employed to measure the curvature radius of the cylindrical workpiece’s surface. Experimental results indicate that the proposed measurement method can achieve good measurement precision with a mean error of the curvature radius of a workpiece’s surface of 0.89% at a reasonable speed of 10.226 s, which is superior to some existing methods

    Overexpression of Phosphoserine Aminotransferase 1 (PSAT1) Predicts Poor Prognosis and Associates with Tumor Progression in Human Esophageal Squamous Cell Carcinoma

    No full text
    Background/Aims: Phosphoserine aminotransferase 1 (PSAT1) is over-expressed in many carcinoma tissues, however little is known regarding its expression and function in esophageal carcinogenesis. This study investigated the expression of PSAT1 in human esophageal squamous cell carcinoma (ESCC) tissues to determine the relationship between PSAT1 expression and clinicopathological factors. Methods: The expression of PSAT1 in 64 surgical resections from esophageal carcinogenesis patients was examined by quantitative RT-PCR and immunohistochemistry and the results were compared with clinicopathological factors. In vitro experiments were performed in ESCC cells overexpressing PSAT1 to measure cell viability and invasion. Tumor formation in vivowas examined by injection of tumor cells into immunocompromised mice subcutaneously. Results: PSAT1 expression was elevated in ESCC tissues compared to normal esophageal tissues. Increased PSAT1 expression was significantly associated with stage of disease, lymph node metastasis, distant metastasis and poor prognosis. In vitro, PSAT1 overexpression promoted ESCC cell proliferation and matrigel invasion. In vivo, injection of mice with ECSS cells overexpressing PSAT1 enhanced tumor formation. Western blot analysis revealed that PSAT1 upregulated the expression and/or activity of GSK3β/Snail. Conclusion: PSAT1 plays a crucial role in the development of ESCC and predicts poor survival. Therefore, PSAT1 may be a promising novel anticancer therapeutic target

    MicroRNA-340 Inhibits Esophageal Cancer Cell Growth and Invasion by Targeting Phosphoserine Aminotransferase 1

    No full text
    Background/Aims: Emerging evidence indicates that microRNA (miR)-340 is downregulated in various human cancers, suggesting that it acts as a tumor suppressor. The aim of the present study was to evaluate the expression and role of miR-340 in human esophageal squamous cell carcinoma (ESCC). Methods: The expression of miR-340 was examined in 64 paired ESCC and adjacent non-tumor tissues by quantitative real time PCR. The effects of miR-340 on ESCC cell proliferation and metastasis were examined by MTT and Matrigel invasion assays. Tumor growth was assessed by subcutaneous inoculation of cells into BALB/c nude mice. Targets of miR-340 were identified by bioinformatics and verified by luciferase reporter assays, quantitative real-time PCR, and western blotting. Results: MiR-340 was significantly downregulated in ESCC tumor tissues compared to adjacent non-tumor tissues and in ESCC cell lines compared to esophageal endothelial cells. Overexpression of miR-340 inhibited ESCC cell growth, colony formation, and invasion, and tumor growth in a xenograft mouse model. PSAT1 was identified as a direct target of miR-340 and its ectopic expression partially reversed the miR-340 mediated inhibition of viability, invasion and EMT in ESCC cells. The expression of miR-340 was negatively correlated with that of PSAT1 in human ESCC samples. Conclusion: MiR-340 functions as a tumor suppressor by modulating the expression of PSAT1 and may contribute to the progression and invasiveness of ESCC

    Survey of Reliability Research on 3D Packaged Memory

    No full text
    As the core carrier of information storage, a semiconductor memory device is a basic product with a large volume that is widespread in the integrated circuit industry. With the rapid development of semiconductor manufacturing processes and materials, the internal structure of memory has gradually shifted from a 2D planar packaging structure to a 3D packaging structure to meet industry demands for high-frequency, high-speed, and large-capacity devices with low power consumption. However, advanced 3D packaging technology can pose some reliability risks, making devices prone to failure, especially when used in harsh environmental conditions, including temperature changes, high temperature and humidity levels, and mechanical stress. In this paper, the authors introduce the typical structure characteristics of 3D packaged memory; analyze the reasons for device failure caused by stress; summarize current research methods that utilize temperature, mechanical and hygrothermal theories, and failure models; and present future challenges and directions regarding the reliability research of 3D packaged memory
    corecore