95 research outputs found

    The Silk Roads: A case study in serial transboundary protection and management of cultural heritage

    Get PDF
    In recent years nominations for UNESCO World Heritage status have started to utilise the concepts of cultural routes and cultural landscapes to justify and articulate inscription; increasingly used the approach of serial properties (multiple components linked by a theme); and embarked upon more ambitious transnational nomination projects, requiring international cooperation and coordinated management between nations. This thesis explores the successful 2014 Silk Roads serial transnational nomination, inscribed by China, Kazakhstan and Kyrgyzstan, to examine both the theory and practise of nomination and subsequent management. Fifteen component sites were analysed in detail, through a combination of literature reviews (published and unpublished material) and fieldwork (including observational studies and semi-structured interviews with heritage professionals, at different levels, within the three countries), to understand the strengths and weaknesses of the current approaches, and the extent to which the nominated property satisfies the aspirations of the participants. On the positive side, there have been some significant advances in using the nomination to develop capacity building. However, the research exposed significant issues with the dialogue between participating countries, their lack of a shared understanding of the property (between but also within countries), and the differing agendas of the State Parties. The research also raised questions regarding tensions between local values and engagement in the process, and the state-led initiatives. The most extreme case was at Talgar in Kazakhstan, but the trend is more widespread. The complexity of a serial property, in terms of the stakeholders, social environments, and multi-sector participation in the management processes, means that coordinating management needs to pay much more attention to the collaboration between the partners, and between the partners and communities. The outcome of the research is that UNESCO and State Parties need consider, on a practical level, how benefits of serial and transnational projects should be achieved. This needs to understand what the scope of coordinated (as opposed to state-based) management should be, how the process will improve conservation and management, and how a broader serial transnational project benefits interpretation and access. It is suggested that UNESCO, ICOMOS, and intergovernmental bodies, need to take a stronger role in this process at the inception of the nomination process, and provide effective support in networking, education, training, and information sharing

    On Cyber Risk Management of Blockchain Networks: A Game Theoretic Approach

    Full text link
    Open-access blockchains based on proof-of-work protocols have gained tremendous popularity for their capabilities of providing decentralized tamper-proof ledgers and platforms for data-driven autonomous organization. Nevertheless, the proof-of-work based consensus protocols are vulnerable to cyber-attacks such as double-spending. In this paper, we propose a novel approach of cyber risk management for blockchain-based service. In particular, we adopt the cyber-insurance as an economic tool for neutralizing cyber risks due to attacks in blockchain networks. We consider a blockchain service market, which is composed of the infrastructure provider, the blockchain provider, the cyber-insurer, and the users. The blockchain provider purchases from the infrastructure provider, e.g., a cloud, the computing resources to maintain the blockchain consensus, and then offers blockchain services to the users. The blockchain provider strategizes its investment in the infrastructure and the service price charged to the users, in order to improve the security of the blockchain and thus optimize its profit. Meanwhile, the blockchain provider also purchases a cyber-insurance from the cyber-insurer to protect itself from the potential damage due to the attacks. In return, the cyber-insurer adjusts the insurance premium according to the perceived risk level of the blockchain service. Based on the assumption of rationality for the market entities, we model the interaction among the blockchain provider, the users, and the cyber-insurer as a two-level Stackelberg game. Namely, the blockchain provider and the cyber-insurer lead to set their pricing/investment strategies, and then the users follow to determine their demand of the blockchain service. Specifically, we consider the scenario of double-spending attacks and provide a series of analytical results about the Stackelberg equilibrium in the market game

    Profit Maximization Auction and Data Management in Big Data Markets

    Full text link
    A big data service is any data-originated resource that is offered over the Internet. The performance of a big data service depends on the data bought from the data collectors. However, the problem of optimal pricing and data allocation in big data services is not well-studied. In this paper, we propose an auction-based big data market model. We first define the data cost and utility based on the impact of data size on the performance of big data analytics, e.g., machine learning algorithms. The big data services are considered as digital goods and uniquely characterized with "unlimited supply" compared to conventional goods which are limited. We therefore propose a Bayesian profit maximization auction which is truthful, rational, and computationally efficient. The optimal service price and data size are obtained by solving the profit maximization auction. Finally, experimental results on a real-world taxi trip dataset show that our big data market model and auction mechanism effectively solve the profit maximization problem of the service provider.Comment: 6 pages, 9 figures. This paper was accepted by IEEE WCNC conference in Dec. 201

    Cloud/fog computing resource management and pricing for blockchain networks

    Full text link
    The mining process in blockchain requires solving a proof-of-work puzzle, which is resource expensive to implement in mobile devices due to the high computing power and energy needed. In this paper, we, for the first time, consider edge computing as an enabler for mobile blockchain. In particular, we study edge computing resource management and pricing to support mobile blockchain applications in which the mining process of miners can be offloaded to an edge computing service provider. We formulate a two-stage Stackelberg game to jointly maximize the profit of the edge computing service provider and the individual utilities of the miners. In the first stage, the service provider sets the price of edge computing nodes. In the second stage, the miners decide on the service demand to purchase based on the observed prices. We apply the backward induction to analyze the sub-game perfect equilibrium in each stage for both uniform and discriminatory pricing schemes. For the uniform pricing where the same price is applied to all miners, the existence and uniqueness of Stackelberg equilibrium are validated by identifying the best response strategies of the miners. For the discriminatory pricing where the different prices are applied to different miners, the Stackelberg equilibrium is proved to exist and be unique by capitalizing on the Variational Inequality theory. Further, the real experimental results are employed to justify our proposed model.Comment: 16 pages, double-column version, accepted by IEEE Internet of Things Journa

    Competition and Cooperation Analysis for Data Sponsored Market: A Network Effects Model

    Full text link
    The data sponsored scheme allows the content provider to cover parts of the cellular data costs for mobile users. Thus the content service becomes appealing to more users and potentially generates more profit gain to the content provider. In this paper, we consider a sponsored data market with a monopoly network service provider, a single content provider, and multiple users. In particular, we model the interactions of three entities as a two-stage Stackelberg game, where the service provider and content provider act as the leaders determining the pricing and sponsoring strategies, respectively, in the first stage, and the users act as the followers deciding on their data demand in the second stage. We investigate the mutual interaction of the service provider and content provider in two cases: (i) competitive case, where the content provider and service provider optimize their strategies separately and competitively, each aiming at maximizing the profit and revenue, respectively; and (ii) cooperative case, where the two providers jointly optimize their strategies, with the purpose of maximizing their aggregate profits. We analyze the sub-game perfect equilibrium in both cases. Via extensive simulations, we demonstrate that the network effects significantly improve the payoff of three entities in this market, i.e., utilities of users, the profit of content provider and the revenue of service provider. In addition, it is revealed that the cooperation between the two providers is the best choice for all three entities.Comment: 7 pages, submitted to one conferenc

    Optimal Pricing-Based Edge Computing Resource Management in Mobile Blockchain

    Full text link
    As the core issue of blockchain, the mining requires solving a proof-of-work puzzle, which is resource expensive to implement in mobile devices due to high computing power needed. Thus, the development of blockchain in mobile applications is restricted. In this paper, we consider the edge computing as the network enabler for mobile blockchain. In particular, we study optimal pricing-based edge computing resource management to support mobile blockchain applications where the mining process can be offloaded to an Edge computing Service Provider (ESP). We adopt a two-stage Stackelberg game to jointly maximize the profit of the ESP and the individual utilities of different miners. In Stage I, the ESP sets the price of edge computing services. In Stage II, the miners decide on the service demand to purchase based on the observed prices. We apply the backward induction to analyze the sub-game perfect equilibrium in each stage for uniform and discriminatory pricing schemes. Further, the existence and uniqueness of Stackelberg game are validated for both pricing schemes. At last, the performance evaluation shows that the ESP intends to set the maximum possible value as the optimal price for profit maximization under uniform pricing. In addition, the discriminatory pricing helps the ESP encourage higher total service demand from miners and achieve greater profit correspondingly.Comment: 7 pages, submitted to one conference. arXiv admin note: substantial text overlap with arXiv:1710.0156
    corecore