5 research outputs found

    The Impact of a Ligand Binding on Strand Migration in the SAM-I Riboswitch

    Get PDF
    <div><p>Riboswitches sense cellular concentrations of small molecules and use this information to adjust synthesis rates of related metabolites. Riboswitches include an aptamer domain to detect the ligand and an expression platform to control gene expression. Previous structural studies of riboswitches largely focused on aptamers, truncating the expression domain to suppress conformational switching. To link ligand/aptamer binding to conformational switching, we constructed models of an S-adenosyl methionine (SAM)-I riboswitch RNA segment incorporating elements of the expression platform, allowing formation of an antiterminator (AT) helix. Using Anton, a computer specially developed for long timescale Molecular Dynamics (MD), we simulated an extended (three microseconds) MD trajectory with SAM bound to a modeled riboswitch RNA segment. Remarkably, we observed a strand migration, converting three base pairs from an antiterminator (AT) helix, characteristic of the transcription ON state, to a P1 helix, characteristic of the OFF state. This conformational switching towards the OFF state is observed only in the presence of SAM. Among seven extended trajectories with three starting structures, the presence of SAM enhances the trend towards the OFF state for two out of three starting structures tested. Our simulation provides a visual demonstration of how a small molecule (<500 MW) binding to a limited surface can trigger a large scale conformational rearrangement in a 40 kDa RNA by perturbing the Free Energy Landscape. Such a mechanism can explain minimal requirements for SAM binding and transcription termination for SAM-I riboswitches previously reported experimentally.</p></div

    Quantized Water Access to the HIV‑1 Protease Active Site as a Proposed Mechanism for Cooperative Mutations in Drug Affinity

    No full text
    The development of resistance to different drugs remains a major problem for a wide range of infections. In particular, combinations of specific mutations, which individually demonstrate no effect, exhibit significant cooperativity. Here we show that changes to the energy of ligand binding in different resistant HIV-1 proteases are correlated with the creation of water binding sites in the active site. This correlation is conserved across two drugs (ritonavir and lopinavir). We propose that individual mutations induce changes in flap packing that are insufficient to allow water binding but in combination allow access, leading to the observed cooperative resistance

    Computing Clinically Relevant Binding Free Energies of HIV‑1 Protease Inhibitors

    No full text
    The use of molecular simulation to estimate the strength of macromolecular binding free energies is becoming increasingly widespread, with goals ranging from lead optimization and enrichment in drug discovery to personalizing or stratifying treatment regimes. In order to realize the potential of such approaches to predict new results, not merely to explain previous experimental findings, it is necessary that the methods used are reliable and accurate, and that their limitations are thoroughly understood. However, the computational cost of atomistic simulation techniques such as molecular dynamics (MD) has meant that until recently little work has focused on validating and verifying the available free energy methodologies, with the consequence that many of the results published in the literature are not reproducible. Here, we present a detailed analysis of two of the most popular approximate methods for calculating binding free energies from molecular simulations, molecular mechanics Poisson–Boltzmann surface area (MMPBSA) and molecular mechanics generalized Born surface area (MMGBSA), applied to the nine FDA-approved HIV-1 protease inhibitors. Our results show that the values obtained from replica simulations of the same protease–drug complex, differing only in initially assigned atom velocities, can vary by as much as 10 kcal mol<sup>–1</sup>, which is greater than the difference between the best and worst binding inhibitors under investigation. Despite this, analysis of ensembles of simulations producing 50 trajectories of 4 ns duration leads to well converged free energy estimates. For seven inhibitors, we find that with correctly converged normal mode estimates of the configurational entropy, we can correctly distinguish inhibitors in agreement with experimental data for both the MMPBSA and MMGBSA methods and thus have the ability to rank the efficacy of binding of this selection of drugs to the protease (no account is made for free energy penalties associated with protein distortion leading to the over estimation of the binding strength of the two largest inhibitors ritonavir and atazanavir). We obtain improved rankings and estimates of the relative binding strengths of the drugs by using a novel combination of MMPBSA/MMGBSA with normal mode entropy estimates and the free energy of association calculated directly from simulation trajectories. Our work provides a thorough assessment of what is required to produce converged and hence reliable free energies for protein–ligand binding

    CoCo-MD: A Simple and Effective Method for the Enhanced Sampling of Conformational Space

    Get PDF
    CoCo (“complementary coordinates”) is a method for ensemble enrichment based on principal component analysis (PCA) that was developed originally for the investigation of NMR data. Here we investigate the potential of the CoCo method, in combination with molecular dynamics simulations (CoCo-MD), to be used more generally for the enhanced sampling of conformational space. Using the alanine penta-peptide as a model system, we find that an iterative workflow, interleaving short multiple-walker MD simulations with long-range jumps through conformational space informed by CoCo analysis, can increase the rate of sampling of conformational space up to 10 times for the same computational effort (total number of MD timesteps). Combined with the reservoir-REMD method, free energies can be readily calculated. An alternative, approximate but fast and practically useful, alternative approach to unbiasing CoCo-MD generated data is also described. Applied to cyclosporine A, we can achieve far greater conformational sampling than has been reported previously, using a fraction of the computational resource. Simulations of the maltose binding protein, begun from the “open” state, effectively sample the “closed” conformation associated with ligand binding. The PCA-based approach means that optimal collective variables to enhance sampling need not be defined in advance by the user but are identified automatically and are adaptive, responding to the characteristics of the developing ensemble. In addition, the approach does not require any adaptations to the associated MD code and is compatible with any conventional MD package

    AIMES: Abstractions and Integrated Middleware for Extreme-Scale Science

    No full text
    <p>Poster for 2015 DOE NGNS PI meeting on the AIMES project, which has goals of enabling extreme-scale computing via dynamic federation of distributed heterogeneous resources, and supporting reasoning about applications and both big distributed science and long-tail applications at extreme scale through federation of resources.</p
    corecore