13,702 research outputs found
Specimen size and geometry effects on fracture toughness of Al2O3 measured with short rod and short bar chevron-notch specimens
Plane strain fracture toughness measurements were made on Al2O3 using short rod and short bar chevron notch specimens previously calibrated by the authors for their dimensionless stress intensity factor coefficients. The measured toughness varied systematically with variations in specimen size, proportions, and chevron notch angle apparently due to their influence on the amount of crack extension to maximum load (the measurement point). The toughness variations are explained in terms of a suspected rising R curve for the material tested, along with a discussion of an unavoidable imprecision in the calculation of K sub Ic for materials with rising R curves when tested with chevron notch specimens
A General Information Theoretical Proof for the Second Law of Thermodynamics
We show that the conservation and the non-additivity of the information,
together with the additivity of the entropy make the entropy increase in an
isolated system. The collapse of the entangled quantum state offers an example
of the information non-additivity. Nevertheless, the later is also true in
other fields, in which the interaction information is important. Examples are
classical statistical mechanics, social statistics and financial processes. The
second law of thermodynamics is thus proven in its most general form. It is
exactly true, not only in quantum and classical physics but also in other
processes, in which the information is conservative and non-additive.Comment: 4 page
Quantum Analogue Computing
We briefly review what a quantum computer is, what it promises to do for us,
and why it is so hard to build one. Among the first applications anticipated to
bear fruit is quantum simulation of quantum systems. While most quantum
computation is an extension of classical digital computation, quantum
simulation differs fundamentally in how the data is encoded in the quantum
computer. To perform a quantum simulation, the Hilbert space of the system to
be simulated is mapped directly onto the Hilbert space of the (logical) qubits
in the quantum computer. This type of direct correspondence is how data is
encoded in a classical analogue computer. There is no binary encoding, and
increasing precision becomes exponentially costly: an extra bit of precision
doubles the size of the computer. This has important consequences for both the
precision and error correction requirements of quantum simulation, and
significant open questions remain about its practicality. It also means that
the quantum version of analogue computers, continuous variable quantum
computers (CVQC) becomes an equally efficient architecture for quantum
simulation. Lessons from past use of classical analogue computers can help us
to build better quantum simulators in future.Comment: 10 pages, to appear in the Visions 2010 issue of Phil. Trans. Roy.
Soc.
Equivalent efficiency of a simulated photon-number detector
Homodyne detection is considered as a way to improve the efficiency of
communication near the single-photon level. The current lack of commercially
available {\it infrared} photon-number detectors significantly reduces the
mutual information accessible in such a communication channel. We consider
simulating direct detection via homodyne detection. We find that our particular
simulated direct detection strategy could provide limited improvement in the
classical information transfer. However, we argue that homodyne detectors (and
a polynomial number of linear optical elements) cannot simulate photocounters
arbitrarily well, since otherwise the exponential gap between quantum and
classical computers would vanish.Comment: 4 pages, 4 figure
Fracture toughness of brittle materials determined with chevron notch specimens
The use of chevron-notch specimens for determining the plane strain fracture toughness (K sub Ic) of brittle materials is discussed. Three chevron-notch specimens were investigated: short bar, short rod, and four-point-bend. The dimensionless stress intensity coefficient used in computing K sub Ic is derived for the short bar specimen from the superposition of ligament-dependent and ligament-independent solutions for the straight through crack, and also from experimental compliance calibrations. Coefficients for the four-point-bend specimen were developed by the same superposition procedure, and with additional refinement using the slice model of Bluhm. Short rod specimen stress intensity coefficients were determined only by experimental compliance calibration. Performance of the three chevron-notch specimens and their stress intensity factor relations were evaluated by tests on hot-pressed silicon nitride and sintered aluminum oxide. Results obtained with the short bar and the four-point-bend specimens on silicon nitride are in good agreement and relatively free of specimen geometry and size effects within the range investigated. Results on aluminum oxide were affected by specimen size and chevron-notch geometry, believed due to a rising crack growth resistance curve for the material. Only the results for the short bar specimen are presented in detail
Information Content of Spontaneous Symmetry Breaking
We propose a measure of order in the context of nonequilibrium field theory
and argue that this measure, which we call relative configurational entropy
(RCE), may be used to quantify the emergence of coherent low-entropy
configurations, such as time-dependent or time-independent topological and
nontopological spatially-extended structures. As an illustration, we
investigate the nonequilibrium dynamics of spontaneous symmetry-breaking in
three spatial dimensions. In particular, we focus on a model where a real
scalar field, prepared initially in a symmetric thermal state, is quenched to a
broken-symmetric state. For a certain range of initial temperatures,
spatially-localized, long-lived structures known as oscillons emerge in
synchrony and remain until the field reaches equilibrium again. We show that
the RCE correlates with the number-density of oscillons, thus offering a
quantitative measure of the emergence of nonperturbative spatiotemporal
patterns that can be generalized to a variety of physical systems.Comment: LaTeX, 9 pages, 5 figures, 1 tabl
IrSr_2Sm_{1.15}Ce_{0.85}Cu_{2.175}O_{10}: A Novel Reentrant Spin-Glass Material
A new iridium containing layered cuprate material,
IrSr_2Sm_{1.15}Ce_{0.85}Cu_{2.175}O_{10, has been synthesized by conventional
ambient-pressure solid-state techniques. The material's structure has been
fully characterized by Rietveld refinement of high resolution synchrotron X-ray
diffraction data; tilts and rotations of the IrO_6 octahedra are observed as a
result of a bond mismatch between in-plane Ir-O and Cu-O bond lengths.
DC-susceptibility measurements evidence a complex set of magnetic transitions
upon cooling that are characteristic of a reentrant spin-glass ground-state.
The glassy character of the lowest temperature, Tg=10 K, transition is further
confirmed by AC-susceptibility measurements, showing a characteristic frequency
dependence that can be well fitted by the Vogel-Fulcher law and yields a value
of \Delta_(T_f)/[T_f \Delta log({\omega})] =0.015(1), typical of dilute
magnetic systems. Electronic transport measurements show the material to be
semiconducting at all temperatures with no transition to a superconducting
state. Negative magnetoresistance is observed when the material is cooled below
25 K, and the magnitude of this magnetoresistance is seen to increase upon
cooling to a value of MR = -9 % at 8 K
Generalized Hurst exponent and multifractal function of original and translated texts mapped into frequency and length time series
A nonlinear dynamics approach can be used in order to quantify complexity in
written texts. As a first step, a one-dimensional system is examined : two
written texts by one author (Lewis Carroll) are considered, together with one
translation, into an artificial language, i.e. Esperanto are mapped into time
series. Their corresponding shuffled versions are used for obtaining a "base
line". Two different one-dimensional time series are used here: (i) one based
on word lengths (LTS), (ii) the other on word frequencies (FTS). It is shown
that the generalized Hurst exponent and the derived curves
of the original and translated texts show marked differences. The original
"texts" are far from giving a parabolic function, - in contrast to
the shuffled texts. Moreover, the Esperanto text has more extreme values. This
suggests cascade model-like, with multiscale time asymmetric features as
finally written texts. A discussion of the difference and complementarity of
mapping into a LTS or FTS is presented. The FTS curves are more
opened than the LTS onesComment: preprint for PRE; 2 columns; 10 pages; 6 (multifigures); 3 Tables; 70
reference
cyTRON and cyTRON/JS: two Cytoscape-based applications for the inference of cancer evolution models
The increasing availability of sequencing data of cancer samples is fueling
the development of algorithmic strategies to investigate tumor heterogeneity
and infer reliable models of cancer evolution. We here build up on previous
works on cancer progression inference from genomic alteration data, to deliver
two distinct Cytoscape-based applications, which allow to produce, visualize
and manipulate cancer evolution models, also by interacting with public genomic
and proteomics databases. In particular, we here introduce cyTRON, a
stand-alone Cytoscape app, and cyTRON/JS, a web application which employs the
functionalities of Cytoscape/JS.
cyTRON was developed in Java; the code is available at
https://github.com/BIMIB-DISCo/cyTRON and on the Cytoscape App Store
http://apps.cytoscape.org/apps/cytron. cyTRON/JS was developed in JavaScript
and R; the source code of the tool is available at
https://github.com/BIMIB-DISCo/cyTRON-js and the tool is accessible from
https://bimib.disco.unimib.it/cytronjs/welcome
- …