1,649 research outputs found

    Reference solar irradiance spectra and consequences of their disparities in remote sensing of the ocean colour

    Get PDF
    International audienceSatellite ocean colour missions require a standard extraterrestrial solar irradiance spectrum in the visible and near-infrared (NIR) for use in the process of radiometric calibration, atmospheric correction and normalization of water-leaving radiances from in-situ measurements. There are numerous solar irradiance spectra (or models) currently in use within the ocean colour community and related domains. However, these irradiance spectra, constructed from single and/or multiple measurements sets or models, have noticeable differences ? ranging from about ±1% in the NIR to ±6% in the short wavelength region (ultraviolet and blue) ? caused primarily by the variation in the solar activity and uncertainties in experimental data from different instruments. Such differences between the applied solar irradiance spectra may have quite important consequences in reconciliation, comparison and validation of the products resulting from different ocean colour instruments. Thus, it is prudent to examine the model-to-model differences and ascertain an appropriate solar irradiance spectrum for use in future ocean colour research and validation purposes. This study first describes the processes which generally require the application of a solar irradiance spectrum, and then investigates the eight solar irradiance spectra (widely in use within the remote sensing community) selected on the basis of the following criteria: minimum spectral range of 350?1200 nm with adequate spectral resolution, completely or mostly based on direct measurements, minimal error range, intercomparison with other experiments and update of data. The differences in these spectra in absolute terms and in the SeaWiFS and MERIS in-band irradiances and their consequences on the retrieval algorithms of chlorophyll and suspended sediment are analyzed. Based on these detailed analyses, this study puts forward the solar irradiance spectrum most appropriate for all aspects of research, calibration and validation in ocean colour remote sensing. For an improved approximation of the extraterrestrial solar spectrum in the ultraviolet-NIR domain this study also proposes a new solar constant value determined from space-borne measurements of the last three decades

    Chondrosarcoma of the anterior chest wall: surgical resection and reconstruction, our institutional experience

    Get PDF
    Primary chest wall tumours are not very common. Chondrosarcomas is most common tumour arising from the chest wall. It occurs more often during the third and fourth decade of life. Chondrosarcomas are resistant to conventional chemotherapy and radiotherapy. Wide margin surgical excision remains the best available treatment approach. For chondrosarcomas involving the chest wall, surgical excision may result in chest wall defects that may require reconstruction to obliterate dead space, restore chest wall rigidity, preserve respiratory mechanics, maintain pulmonary function, protect intrathoracic organs, provide soft tissue coverage and minimize deformity. In this article we present a series of 3 cases of chondrosarcoma of anterior chest wall managed at government Royapettah hospital, Kilpauk medical college, Chennai. A 71-year-old male patient, a case of 22×20 cm giant chondrosarcoma arising from anterior left chest wall involving 2nd to 8th ribs. We did wide local excision and reconstruction of chest wall with a synthetic bone cement (methyl methacrylate) construct, sandwiched between two layers of polypropylene mesh.  A 38-year-old male patient, a case of 8×6 cm chondrosarcoma of left anterior chest wall involving 9th rib, we did wide excision of tumor along with 8th, 9th, 10th ribs and defect reconstructed with prolene mesh.  A 37-year-old male patient, a case of 5×4 cm chondrosarcoma arising from left 4th rib. We did wide excision along with 4th rib and primary closure. Patients with chondrosarcomas generally have a good prognosis when optimally diagnosed and treated. Our case series is interesting due to the different sizes of chondrosarcomas at presentation, which are managed differently. Complete resection with wide surgical margin remains the best available treatment, but post resection chest wall reconstruction is posing a great surgical challenge

    Analysis of geologic terrain models for determination of optimum SAR sensor configuration and optimum information extraction for exploration of global non-renewable resources. Pilot study: Arkansas Remote Sensing Laboratory, part 1, part 2, and part 3

    Get PDF
    Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence

    Industrial fisheries off Saurashtra coast based on exploratory survey during 1985-'88

    Get PDF
    In Saurashtra waters, where fishery resource is currently being well exploited by private sector, exploratory survey programmes are being conducted by Government of India. The analysis, based on 4 year survey (1985-'88), with a view to provide information and to extend our knowledge about the spatial and seasonal distribution of various industrially important fishes along the Saurashtra coast. Ribbon fish and sciaenids which constituted the bulk of the catch together formed more than 60% of the total catch and catch rate were 14.7 and 14.5 kg/hr respectively. Area-wise analysis of data revealed that maximum effort was expended in 21° 69 0 and the effort was very low in 21° 70° and 23° 68° Depth wise analysis revealed that the maximum catch rate of ribbon fish and other sciaenids was obtained at 21-30 m depth. The catch rate of elasmobranch, carangid and Lactarius lactarius was maximum at 41-50 m, cat fish, pomfret and perch at 51-60 m and carangid and cephalopod at 61-70 m depth

    Light‐Activated Electron Transfer and Catalytic Mechanism of Carnitine Oxidation by Rieske‐Type Oxygenase from Human Microbiota

    Get PDF
    Oxidation of quaternary ammonium substrate, carnitine by non-heme iron containing Acinetobacter baumannii (Ab) oxygenase CntA/reductase CntB is implicated in the onset of human cardiovascular disease. Herein, we develop a blue-light (365 nm) activation of NADH coupled to electron paramagnetic resonance (EPR) measurements to study electron transfer from the excited state of NADH to the oxidized, Rieske-type, [2Fe-2S]2+ cluster in the AbCntA oxygenase domain with and without the substrate, carnitine. Further electron transfer from one-electron reduced, Rieske-type [2Fe-2S]1+ center in AbCntA-WT to the mono-nuclear, non-heme iron center through the bridging glutamate E205 and subsequent catalysis occurs only in the presence of carnitine. The electron transfer process in the AbCntA-E205A mutant is severely affected, which likely accounts for the significant loss of catalytic activity in the AbCntA-E205A mutant. The NADH photo-activation coupled with EPR is broadly applicable to trap reactive intermediates at low temperature and creates a new method to characterize elusive intermediates in multiple redox-centre containing proteins

    Light‐Activated Electron Transfer and Catalytic Mechanism of Carnitine Oxidation by Rieske‐Type Oxygenase from Human Microbiota

    Get PDF
    Oxidation of quaternary ammonium substrate, carnitine by non-heme iron containing Acinetobacter baumannii (Ab) oxygenase CntA/reductase CntB is implicated in the onset of human cardiovascular disease. Herein, we develop a blue-light (365 nm) activation of NADH coupled to electron paramagnetic resonance (EPR) measurements to study electron transfer from the excited state of NADH to the oxidized, Rieske-type, [2Fe-2S]2+ cluster in the AbCntA oxygenase domain with and without the substrate, carnitine. Further electron transfer from one-electron reduced, Rieske-type [2Fe-2S]1+ center in AbCntA-WT to the mono-nuclear, non-heme iron center through the bridging glutamate E205 and subsequent catalysis occurs only in the presence of carnitine. The electron transfer process in the AbCntA-E205A mutant is severely affected, which likely accounts for the significant loss of catalytic activity in the AbCntA-E205A mutant. The NADH photo-activation coupled with EPR is broadly applicable to trap reactive intermediates at low temperature and creates a new method to characterize elusive intermediates in multiple redox-centre containing proteins

    Kansas environmental and resource study: A Great Plains model, tasks 1-6

    Get PDF
    There are no author identified significant results in this report. Environmental and resources investigations in Kansas utilizing ERTS-1 imagery are summarized for the following areas: (1) use of feature extraction techniqued for texture context information in ERTS imagery; (2) interpretation and automatic image enhancement; (3) water use, production, and disease detection and predictions for wheat; (4) ERTS-1 agricultural statistics; (5) monitoring fresh water resources; and (6) ground pattern analysis in the Great Plains

    Mitochondria matter: Systemic aspects of nonalcoholic fatty liver disease (nafld) and diagnostic assessment of liver function by stable isotope dynamic breath tests

    Get PDF
    The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of β‐oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. “Dynamic” liver function tests include the breath test (BT) based on the use of substrates marked with the non‐radioactive, naturally occurring stable isotope13C. Hepatocellular metabolization of the substrate will generate13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13 CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria.13 C‐BTs explore distinct chronic liver diseases including simple liver steatosis, non‐alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD,13C‐BT use substrates such as α‐ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease.13C‐BTs represent an indirect, cost‐effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of13C‐BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD
    corecore