10,256 research outputs found

    Collapse of Vacuum Bubbles in a Vacuum

    Get PDF
    Motivated by the discovery of a plenitude of metastable vacua in a string landscape and the possibility of rapid tunneling between these vacua, we revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that there exists a large parameter space that allows the bubble to collapse into a black hole or to form a wormhole. This may have interesting implications to inflationary physics.Comment: 8 pages including 6 figures, LaTex; references adde

    High-TcT_\mathrm{c} superconductivity in undoped ThFeAsN

    Full text link
    Unlike the widely studied ReFeAsO series, the newly discovered iron-based superconductor ThFeAsN exhibits a remarkably high critical temperature of 30 K, without chemical doping or external pressure. Here we investigate in detail its magnetic and superconducting properties via muon-spin rotation/relaxation (μ\muSR) and nuclear magnetic resonance (NMR) techniques and show that ThFeAsN exhibits strong magnetic fluctuations, suppressed below 35 K, but no magnetic order. This contrasts strongly with the ReFeAsO series, where stoichiometric parent materials order antiferromagnetically and superconductivity appears only upon doping. The ThFeAsN case indicates that Fermi-surface modifications due to structural distortions and correlation effects are as important as doping in inducing superconductivity. The direct competition between antiferromagnetism and superconductivity, which in ThFeAsN (as in LiFeAs) occurs at already zero doping, may indicate a significant deviation of the ss-wave superconducting gap in this compound from the standard s±s^{\pm} scenario.Comment: 6 pages, 5 figure

    Room-temperature structural phase transition in the quasi-2D spin-1/2 Heisenberg antiferromagnet Cu(pz)2_2(ClO4_4)2_2

    Full text link
    Cu(pz)2_2(ClO4_4)2_2 (with pz denoting pyrazine C4_4H4_4N2_2) is a two-dimensional spin-1/2 square-lattice antiferromagnet with TNT_{\mathrm{N}} = 4.24 K. Due to a persisting focus on the low-temperature magnetic properties, its room-temperature structural and physical properties caught no attention up to now. Here we report a study of the structural features of Cu(pz)2_2(ClO4_4)2_2 in the paramagnetic phase, up to 330 K. By employing magnetization, specific heat, 35^{35}Cl nuclear magnetic resonance, and neutron diffraction measurements, we provide evidence of a second-order phase transition at TT^{\star} = 294 K, not reported before. The absence of a magnetic ordering across TT^{\star} in the magnetization data, yet the presence of a sizable anomaly in the specific heat, suggest a structural order-to-disorder type transition. NMR and neutron-diffraction data corroborate our conjecture, by revealing subtle angular distortions of the pyrazine rings and of ClO4^-_4 counteranion tetrahedra, shown to adopt a configuration of higher symmetry above the transition temperature.Comment: 10 pages, 12 figure

    Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens

    Get PDF
    The emergence of multidrug-resistant pathogens and the restriction on the use antibiotics as growth promoters in feed have drawn attention to the search for possible alternatives. Much interest has been focused on bacteriocins because they exhibit inhibitory activity against pathogens. In this study, an antibacterial substance produced by an isolated Bacillus subtilis strain LFB112 from Chinese herbs, was identified as bacteriocin. It was effective against both Gram-positive and Gram-negative bacteriainvolved in domestic animal diseases, including Escherichia coli, Salmonella pullorum, Pseudomonas aeruginosa, Pasteurella multocida, Clostridium perfringens, Micrococcus luteus, Streptococcus bovisand Staphylococcus aureus. Two multidrug-resistant clinical isolates and a phytopathogenic yeast strain were also inhibited. The antimicrobial substance was secreted at the middle of the exponential phase, whose activity was sensitive to proteinase K and pronase E but resistant to the proteolytic action of papain, trypsin and pepsin. The antimicrobial activity was relatively heat resistant and also active over a wide range of pH 3 - 10. Sodium dodecyl sulfate-polyacrylamide gel electrophoresisanalysis revealed that the active peptide had an apparent molecular weight of about 6.3 kDa. It exhibited a bactericidal activity against S. aureus IVDC C56005. Such characteristics indicate that this bacteriocin may be a potential candidate for alternative agents to control important pathogens in domestic animal diseases

    An experimental study of the influence of elevated buoyancy levels on flame spread rate over thermally thin cellulosic materials

    Get PDF
    The role of buoyancy on the flame spread rate over paper and its effect on extinction was studied by changing the gravity level and pressure. It was found that the flame spread rate decreases as the buoyancy induced flow increases. A method for correlating flame spread data using dimensionless parameters is presented. The Damkohler number is shown to be the dependent variable

    Heavy quark polarizations of e+eqqˉhe^+e^-\to q \bar q h in the general two Higgs doublet model

    Full text link
    The polarizations of the heavy quark (q=tq=t or bb) in the process e+eqqˉhe^+e^- \to q \bar q h have been calculated in the general two Higgs doublet model. The CP violating normal polarization of the top quark can reach 8%, and 232 \sim 3% for the bottom quark, while it is zero in the standard model. The longitudinal and transverse polarizations of the bottom quark can be significantly different from those in SM and consequently could aslo be used as the probe of the new physics.Comment: 12 pages, discussion on statistic significance added, version to appear in PR

    Dependence of quantum correlations of twin beams on pump finesse of optical parametric oscillator

    Full text link
    The dependence of quantum correlation of twin beams on the pump finesse of an optical parametric oscillator is studied with a semi-classical analysis. It is found that the phase-sum correlation of the output signal and idler beams from an optical parametric oscillator operating above threshold depends on the finesse of the pump field when the spurious pump phase noise generated inside the optical cavity and the excess noise of the input pump field are involved in the Langevin equations. The theoretical calculations can explain the previously experimental results, quantitatively.Comment: 27 pages, 8 figure

    Ising-type Magnetic Anisotropy in CePd2_2As2_2

    Full text link
    We investigated the anisotropic magnetic properties of CePd2_2As2_2 by magnetic, thermal and electrical transport studies. X-ray diffraction confirmed the tetragonal ThCr2_2Si2_2-type structure and the high-quality of the single crystals. Magnetisation and magnetic susceptibility data taken along the different crystallographic directions evidence a huge crystalline electric field (CEF) induced Ising-type magneto-crystalline anisotropy with a large cc-axis moment and a small in-plane moment at low temperature. A detailed CEF analysis based on the magnetic susceptibility data indicates an almost pure ±5/2\langle\pm5/2 \rvert CEF ground-state doublet with the dominantly ±3/2\langle\pm3/2 \rvert and the ±1/2\langle\pm1/2 \rvert doublets at 290 K and 330 K, respectively. At low temperature, we observe a uniaxial antiferromagnetic (AFM) transition at TN=14.7T_N=14.7 K with the crystallographic cc-direction being the magnetic easy-axis. The magnetic entropy gain up to TNT_N reaches almost Rln2R\ln2 indicating localised 4f4f-electron magnetism without significant Kondo-type interactions. Below TNT_N, the application of a magnetic field along the cc-axis induces a metamagnetic transition from the AFM to a field-polarised phase at μ0Hc0=0.95\mu_0H_{c0}=0.95 T, exhibiting a text-book example of a spin-flip transition as anticipated for an Ising-type AFM.Comment: 9 Pages, 8 figure

    Ground State Energy of the One-Component Charged Bose Gas

    Full text link
    The model considered here is the `jellium' model in which there is a uniform, fixed background with charge density eρ-e\rho in a large volume VV and in which N=ρVN=\rho V particles of electric charge +e+e and mass mm move --- the whole system being neutral. In 1961 Foldy used Bogolubov's 1947 method to investigate the ground state energy of this system for bosonic particles in the large ρ\rho limit. He found that the energy per particle is 0.402rs3/4me4/2-0.402 r_s^{-3/4} {me^4}/{\hbar^2} in this limit, where rs=(3/4πρ)1/3e2m/2r_s=(3/4\pi \rho)^{1/3}e^2m/\hbar^2. Here we prove that this formula is correct, thereby validating, for the first time, at least one aspect of Bogolubov's pairing theory of the Bose gasComment: 38 pages latex. Typos corrected.Lemma 6.2 change
    corecore