27 research outputs found

    Development of Copper-Catalyzed Azide–Alkyne Cycloaddition for Increased in Vivo Efficacy of Interferon β‑1b by Site-Specific PEGylation

    No full text
    The development of protein conjugate therapeutics requires control over the site of modification to allow for reproducible generation of a product with the desired potency, pharmacokinetic, and safety profile. Placement of a single nonnatural amino acid at the desired modification site of a recombinant protein, followed by a bioorthogonal reaction, can provide complete control. To this end, we describe the development of copper-catalyzed azide–alkyne cycloaddition (CuAAC, a click chemistry reaction) for site-specific PEGylation of interferon β-1b (IFNb) containing azidohomoalanine (Aha) at the N-terminus. Reaction conditions were optimized using various propargyl-activated PEGs, tris­(benzyltriazolylmethyl)­amine (TBTA), copper sulfate, and dithiothreitol (DTT) in the presence of SDS. The requirement for air in order to advance the redox potential of the reaction was investigated. The addition of unreactive PEG diol reduced the required molar ratio to 2:1 PEG–alkyne to IFNb. The resultant method produced high conversion of Aha-containing IFNb to the single desired product. PEG–IFNbs with 10, 20, 30, and 40 kDa linear or 40 kDa branched PEGs were produced with these methods and compared. Increasing PEG size yielded decreasing in vitro antiviral activities along with concomitant increases in elimination half-life, AUC, and bioavailability when administered in rats or monkeys. A Daudi tumor xenograft model provided comparative evaluation of these combined effects, wherein a 40 kDa branched PEG–IFNb was much more effective than conjugates with smaller PEGs or unPEGylated IFNb at preventing tumor growth in spite of dosing with fewer units and lesser frequency. The results demonstrate the capability of site-specific nonnatural amino acid incorporation to generate novel biomolecule conjugates with increased in vivo efficacy

    Critical roles of CD30/CD30L interactions in murine autoimmune diabetes

    No full text
    CD30/CD30L is a member of tumour necrosis factor (TNF) receptor/TNF superfamily and has been implicated in immune-regulation. A genetic study has also suggested a possible implication of CD30 in spontaneous autoimmune diabetes in NOD mice. In this study, we investigated the involvement of CD30/CD30L in the development of diabetes in NOD mice. Flow cytometric analysis showed that CD30 and CD30L were highly expressed on CD4(+) or CD8(+) T cells in the spleen and pancreatic lymph node of younger NOD mice. In addition, islet-specific CD4(+) or CD8(+) T cell lines expressed CD30 and CD30L. Administration of a neutralizing anti-CD30L monoclonal antibody (mAb) from 2 to 10 week of age completely suppressed the development of spontaneous diabetes in NOD mice. In addition, the treatment with anti-CD30L mAb also inhibited the development of diabetes induced by adoptive transfer of spleen cells from diabetic NOD mice or islet-specific CD4(+) or CD8(+) T cell lines into NOD-SCID mice. Furthermore, anti-CD30L mAb inhibited T cell proliferation in response to islet antigens. These results suggested that CD30/CD30L interaction plays important roles in both induction and effector phases of autoimmune diabetes in NOD mice
    corecore