243 research outputs found

    Brane Inflation is Attractive

    Full text link
    We study the phase space of initial conditions for brane inflation, and find that including the effects of the Dirac-Born-Infeld (DBI) kinetic term dramatically improves previous estimates on the amount of fine tuning of initial conditions necessary for inflation, even for models dominated by slow roll. Two effects turn out to be important for the phase space analysis: restrictions on the total available phase space due to UV effects in brane inflation, and the extension of the inflationary attractor to the DBI inflationary regime. We compare the amount of initial conditions fine tuning required for a brane inflation model and its standard field theory counterpart and find that brane inflation decreases the required tuning by several orders of magnitude.Comment: 20 pages, 6 figures; v2. references added, typos corrected, discussion clarified; v3. some numbers changed, discussion on phase space fine tuning slightly modifie

    Warming up brane-antibrane inflation

    Full text link
    We show that, in constructions with additional intersecting D-branes, brane-antibrane inflation may naturally occur in a warm regime, such that strong dissipative effects damp the inflaton's motion, greatly alleviating the associated eta-problem. We illustrate this for D3-antiD3 inflation in flat space with additional flavor D7-branes, where for both a Coulomb-like or a quadratic hybrid potential a sufficient number of e-folds may be obtained for perturbative couplings and O(10-10^4) branes. This is in clear contrast with the corresponding cold scenarios, thus setting the stage for more realistic constructions within fully stabilized compactifications. Such models generically predict a negligible amount of tensor perturbations and non-gaussianity f_NL \sim O(10).Comment: 8 pages, 2 figures; version to be published in Physical Review

    Observing the Geometry of Warped Compactification via Cosmic Inflation

    Get PDF
    Using DBI inflation as an example, we demonstrate that the detailed geometry of warped compactification can leave an imprint on the cosmic microwave background (CMB). We compute CMB observables for DBI inflation in a generic class of warped throats and find that the results (such as the sign of the tilt of the scalar perturbations and its running) depend sensitively on the precise shape of the warp factor. In particular, we analyze the warped deformed conifold and find that the results can differ from those of other warped geometries, even when these geometries approximate well the exact metric of the warped deformed conifold.Comment: 4 pages, 3 figures. v2: References and clarifications adde

    Comparing Brane Inflation to WMAP

    Full text link
    We compare the simplest realistic brane inflationary model to recent cosmological data, including WMAP 3-year cosmic microwave background (CMB) results, Sloan Digital Sky Survey luminous red galaxies (SDSS LRG) power spectrum data and Supernovae Legacy Survey (SNLS) Type 1a supernovae distance measures. Here, the inflaton is simply the position of a D3D3-brane which is moving towards a Dˉ3\bar{D}3-brane sitting at the bottom of a throat (a warped, deformed conifold) in the flux compactified bulk in Type IIB string theory. The analysis includes both the usual slow-roll scenario and the Dirac-Born-Infeld scenario of slow but relativistic rolling. Requiring that the throat is inside the bulk greatly restricts the allowed parameter space. We discuss possible scenarios in which large tensor mode and/or non-Gaussianity may emerge. Here, the properties of a large tensor mode deviate from that in the usual slow-roll scenario, providing a possible stringy signature. Overall, within the brane inflationary scenario, the cosmological data is providing information about the properties of the compactification of the extra dimensions.Comment: 45 pages 11 figure

    Cosmology of the Tachyon in Brane Inflation

    Full text link
    In certain implementations of the brane inflationary paradigm, the exit from inflation occurs when the branes annihilate through tachyon condensation. We investigate various cosmological effects produced by this tachyonic era. We find that only a very small region of the parameter space (corresponding to slow-roll with tiny inflaton mass) allows for the tachyon to contribute some e-folds to inflation. In addition, non-adiabatic density perturbations are generated at the end of inflation. When the brane is moving relativistically this contribution can be of the same order as fluctuations produced 55 e-folds before the end of inflation. The additional contribution is very nearly scale-invariant and enhances the tensor/scalar ratio. Additional non-gaussianities will also be generated, sharpening current constraints on DBI-type models which already predict a significantly non-gaussian signal.Comment: 30 pages, 2 figures; v3, minor revision, JCAP versio

    On D3-brane Potentials in Compactifications with Fluxes and Wrapped D-branes

    Get PDF
    We study the potential governing D3-brane motion in a warped throat region of a string compactification with internal fluxes and wrapped D-branes. If the Kahler moduli of the compact space are stabilized by nonperturbative effects, a D3-brane experiences a force due to its interaction with D-branes wrapping certain four-cycles. We compute this interaction, as a correction to the warped four-cycle volume, using explicit throat backgrounds in supergravity. This amounts to a closed-string channel computation of the loop corrections to the nonperturbative superpotential that stabilizes the volume. We demonstrate for warped conical spaces that the superpotential correction is given by the embedding equation specifying the wrapped four-cycle, in agreement with the general form proposed by Ganor. Our approach automatically provides a solution to the problem of defining a holomorphic gauge coupling on wrapped D7-branes in a background with D3-branes. Finally, our results have applications to cosmological inflation models in which the inflaton is modeled by a D3-brane moving in a warped throat.Comment: 45 pages, 1 figure; v2: added reference, clarified notatio

    On Power Law Inflation in DBI Models

    Get PDF
    Inflationary models in string theory which identify the inflaton with an open string modulus lead to effective field theories with non-canonical kinetic terms: Dirac-Born-Infeld scalar field theories. In the case of a DD-brane moving in an AdS throat with a quadratic scalar field potential DBI kinetic terms allow a novel realization of power law inflation. This note adresses the question of whether this behaviour is special to this particular choice of throat geometry and potential. The answer is that for any throat geometry one can explicitly find a potential which leads to power law inflation. This generalizes the well known fact that an exponential potential gives power law inflation in the case of canonical kinetic terms.Comment: References and comments adde

    Number counts and non-Gaussianity

    Get PDF
    We describe a general procedure for using number counts of any object to constrain the probability distribution of the primordial fluctuations, allowing for generic weak non-Gaussianity. We apply this procedure to use limits on the abundance of primordial black holes and dark matter ultracompact minihalos to characterize the allowed statistics of primordial fluctuations on very small scales. We present constraints on the power spectrum and the amplitude of the skewness for two different families of non-Gaussian distributions, distinguished by the relative importance of higher moments. Although primordial black holes probe the smallest scales, ultracompact minihalos provide significantly stronger constraints on the power spectrum and so are more likely to eventually provide small-scale constraints on non-Gaussianity
    • …
    corecore