4 research outputs found

    Metabolic dysfunction in lymphocytes promotes postoperative morbidity

    No full text
    Abstract Perioperative lymphopenia has been linked with an increased risk of postoperative infectious complications, but the mechanisms remain unclear. We tested the hypothesis that bioenergetic dysfunction is an important mechanism underlying lymphopenia, impaired functionality and infectious complications. In two cohorts of patients (61-82 years old) undergoing orthopaedic joint replacement (n = 417 and 328, respectively), we confirmed prospectively that preoperative lymphopenia ( 1.3 x 10 9 ·l −1 ; <20 % white cell count; prevalence 15-18 %) was associated with infectious complications (relative risk 1.5 (95 % confidence interval 1.1-2.0); P = 0.008) and prolonged hospital stay. Lymphocyte respirometry, mitochondrial bioenergetics and function were assessed (n = 93 patients). Postoperative lymphocytes showed a median 43 % fall (range: 26-65 %; P = 0.029; n = 13 patients) in spare respiratory capacity, the extra capacity available to produce energy in response to stress. This was accompanied by reduced glycolytic capacity. A similar hypometabolic phenotype was observed in lymphocytes sampled preoperatively from chronically lymphopenic patients (n = 21). This hypometabolic phenotype was associated with functional lymphocyte impairment including reduced T-cell proliferation, lower intracellular cytokine production and excess apoptosis induced by a range of common stressors. Glucocorticoids, which are ubiquitously elevated for a prolonged period postoperatively, generated increased levels of mitochondrial reactive oxygen species, activated caspase-1 and mature interleukin (IL)-1β in human lymphocytes, suggesting inflammasome activation. mRNA transcription of the NLRP1 inflammasome was increased in lymphocytes postoperatively. Genetic ablation of the murine NLRP3 inflammasome failed to prevent glucocorticoid-induced lymphocyte apoptosis and caspase-1 activity, but increased NLRP1 protein expression. Our findings suggest that the hypometabolic phenotype observed in chronically lymphopenic patients and/or acquired postoperatively increases the risk of postoperative infection through glucocorticoid activation of caspase-1 via the NLRP1 inflammasome

    Metabolic dysfunction in lymphocytes promotes postoperative morbidity

    No full text
    Perioperative lymphopenia has been linked with an increased risk of postoperative infectious complications, but the mechanisms remain unclear. We tested the hypothesis that bioenergetic dysfunction is an important mechanism underlying lymphopenia, impaired functionality and infectious complications. In two cohorts of patients (61-82 years old) undergoing orthopaedic joint replacement (n=417 and 328, respectively), we confirmed prospectively that preoperative lymphopenia (≤1.3 x 10(9)·l(-1); <20% white cell count; prevalence 15-18%) was associated with infectious complications (relative risk 1.5 (95% confidence interval 1.1-2.0); P=0.008) and prolonged hospital stay. Lymphocyte respirometry, mitochondrial bioenergetics and function were assessed (n=93 patients). Postoperative lymphocytes showed a median 43% fall (range: 26-65%; P=0.029; n=13 patients) in spare respiratory capacity, the extra capacity available to produce energy in response to stress. This was accompanied by reduced glycolytic capacity. A similar hypometabolic phenotype was observed in lymphocytes sampled preoperatively from chronically lymphopenic patients (n=21). This hypometabolic phenotype was associated with functional lymphocyte impairment including reduced T-cell proliferation, lower intracellular cytokine production and excess apoptosis induced by a range of common stressors. Glucocorticoids, which are ubiquitously elevated for a prolonged period postoperatively, generated increased levels of mitochondrial reactive oxygen species, activated caspase-1 and mature interleukin (IL)-1β in human lymphocytes, suggesting inflammasome activation. mRNA transcription of the NLRP1 inflammasome was increased in lymphocytes postoperatively. Genetic ablation of the murine NLRP3 inflammasome failed to prevent glucocorticoid-induced lymphocyte apoptosis and caspase-1 activity, but increased NLRP1 protein expression. Our findings suggest that the hypometabolic phenotype observed in chronically lymphopenic patients and/or acquired postoperatively increases the risk of postoperative infection through glucocorticoid activation of caspase-1 via the NLRP1 inflammasome

    Acquired loss of cardiac vagal activity is associated with myocardial injury in patients undergoing noncardiac surgery: prospective observational mechanistic cohort study.

    No full text
    BACKGROUND: Myocardial injury is more frequent after noncardiac surgery in patients with preoperative cardiac vagal dysfunction, as quantified by delayed heart rate (HR) recovery after cessation of cardiopulmonary exercise testing. We hypothesised that serial and dynamic measures of cardiac vagal activity are also associated with myocardial injury after noncardiac surgery. METHODS: Serial autonomic measurements were made before and after surgery in patients undergoing elective noncardiac surgery. Cardiac vagal activity was quantified by HR variability and HR recovery after orthostatic challenge (supine to sitting). Revised cardiac risk index (RCRI) was calculated for each patient. The primary outcome was myocardial injury (high-sensitivity troponin ≥15 ng L-1) within 48 h of surgery, masked to investigators. The exposure of interest was cardiac vagal activity (high-frequency power spectral analysis [HFLn]) and HR recovery 90 s from peak HR after the orthostatic challenge. RESULTS: Myocardial injury occurred in 48/189 (25%) patients, in whom 41/48 (85%) RCRI was <2. In patients with myocardial injury, vagal activity (HFLn) declined from 5.15 (95% confidence interval [CI]: 4.58-5.72) before surgery to 4.33 (95% CI: 3.76-4.90; P<0.001) 24 h after surgery. In patients who remained free of myocardial injury, HFLn did not change (4.95 [95% CI: 4.64-5.26] before surgery vs 4.76 [95% CI: 4.44-5.08] after surgery). Before and after surgery, the orthostatic HR recovery was slower in patients with myocardial injury (5 beats min-1 [95% CI: 3-7]), compared with HR recovery in patients who remained free of myocardial injury (10 beats min-1 [95% CI: 7-12]; P=0.02). CONCLUSIONS: Serial HR measures indicating loss of cardiac vagal activity are associated with perioperative myocardial injury in lower-risk patients undergoing noncardiac surgery
    corecore