9 research outputs found

    Submerged Membrane Bioreactor (SMBR) for Treatment of Textile Dye Wastewatertowards Developing Novel MBR Process

    Get PDF
    Abstract This paper deals with the application of a submerged membrane bioreactor (SMBR) with commercial membrane module and novel MBR modulefor the treatment of model textile dye wastewater (MTDW). For this work, MTDW was developed based on different publications and a pilot-scale automated SMBR unit was applied to carry out the tests with this model wastewater. The system is on the way to be upgraded to attain novel MBR module replacing the applied commercial membrane by novel membrane materials which have been developed by the European Commission funded project "BioNexGen" [1] . The hydraulic volume of the employed SMBR reactor was 57 L. One flat sheet commercial MBR module was submerged in the reactor. The module consisted of 3 sheets, with 25 cm × 25 cm dimensions of each sheet covering total active membrane area of 0.33 m2. To reach the target, different MBR process parameters like COD, BOD, TOC, pH, conductivity, flux, TMP, MLSS, colour contents, air supply, O2 consumption, HRT, SRT, drying residue, nutrients etc. have been investigated. It is reported that under the operating conditions of permeate flux of 4 L/m2h, around 50 mbar of TMP, 12 g/L of MLSS, 40-80 h of HRT, 1.0 m3/h of air supply to MBR reactor, pH of 8.2 ± 0.2- 10.5 ± 0.2 and temperature of 18 ± 2 °C, the COD removal efficiency was around 90% for 2450 mg/L inlet COD fed to the membrane bioreactor and Red and Blue colour removal efficiencies were 25-70% and 20-50% respectively. In order to develop novel MBR process, a novel MBR module has already been applied replacing the commercial one and the preliminary results are reported

    Design and testing of a pilot-scale submerged membrane bioreactor (MBR) for textile wastewater treatment

    Get PDF
    Abstract The objective of this paper is to deal with the design of a pilot-scale submerged membrane bioreactor (MBR) and a short-term functionality test to be performed with textile wastewater. The design calculations were done based on the design parameters analysed from local textile wastewater and typical values of activated sludge kinetic coefficients. Other process parameters like bioreactor volume (tank size), hydraulic residence time (HRT), biomass loading (F/M ratio), oxygen demand, etc., were calculated depending on the real textile wastewater characteristics. Taking the design basis into consideration, a pilot-scale MBR was constructed equipped with LabVIEW programme- and sensors-controlled computer system. Based on the theoretical calculations, the hydraulic volume of the MBR reactor was around 56.6 L with flat sheet membranes (3 sheets, with 25 cm × 25 cm dimensions of each sheet) with HRT of 16.9 h. Finally, performance tests for 6 weeks were carried out in a local (Darmstadt, Germany) laundry textile wastewater to test the functionality of MBR pilot plant. Under the operating conditions of 250 mbar suction pressure and 12 g/L of MLSS, the COD removal efficiency was around 90% for 800–3500 mg/L inlet COD fed to the membrane bioreactor

    Novel low-fouling membrane bioreactor (MBR) for industrial wastewater treatment

    Get PDF
    A novel antifouling coating of ultrafiltration (UF) commercial membranes, based on a polymerisable bicontinuous microemulsion (PBM) technique, was developed and tested for the first time in a membrane bioreactor (MBR) using an artificial model textile dye wastewater and compared with a commercial uncoated UF membrane. The results showed that the commercial MBR module faced severe fouling problems whereas the novel coated PBM MBR module reduced the fouling significantly. The analysis of fouling rate using a resistance model confirms that PBM coated membrane has a higher antifouling effect. The antimicrobial properties of the PBM membrane contributed by polymerisable cationic surfactant acryloyloxyundecyltriethylammonium bromide (AUTEAB) guaranteed an anti-biofouling effect preventing the growth of microorganisms on the membrane surface. In addition, the PBM MBR module showed 10±1% higher blue dye removal efficiency and a similar rate of COD removal efficiency of about 95±1% compared to commercial module. However, water permeability was slightly lower due to extra resistance of the PBM coating. Root mean squared (RMS) roughness measurement and analysis of AFM images confirmed that the stable novel membrane coating still existed and showed antimicrobial effect even after 105 days of operation. The results obtained demonstrated the potential of the low fouling PBM membrane.European Union within BioNexGen project (CP-FP-246039-2 EU-FP7

    3D printing technology in the management of carpal tunnel syndrome: A case report

    No full text
    A 35-year-old individual with carpal tunnel syndrome presented with tingling and numbness in the left thumb, index, and middle finger. A 3D printed CTS splint was crafted to immobilize the affected wrist joint, aiding pharmacotherapy. At six weeks, evaluations included the Boston Carpal Tunnel Questionnaire (BCTQ), Visual Analogue Scale (VAS) for pain, and Evaluation of Satisfaction with assistive Technology (QUEST) version 2.0.9. Substantial improvements were observed in Bangla-BCTQ scores (symptom severity scale: 3.68 vs. 1.27; functional status scale: 2.74 vs. 1.31), VAS (70 vs. 30), and QUEST scores. 3D printing technology may contribute to better personalized musculoskeletal care enhancing quality of life

    Development of membrane bioreactor (MBR) process applying novel low fouling membranes

    No full text
    Dottorato di Ricerca in "Ingegneria Chimica e dei Materiali" Ciclo XXVISSD, a.a. 2013Water is a part and parcel of human life. Water contaminated from industry and agriculture with heavy metal ions, pesticides, organic compounds, endocrine disruptive compounds, nutrients (phosphates, nitrates, nitrites) has to be effi-ciently treated to protect humans from being intoxicated with these compounds or with bacteria. Clean water as basis for health and good living conditions is too far out of reach for the majority of the population in the world (Bionexgen, 2013). Water recycling is now widely accepted as a sustainable option to re-spond to the general increase of the fresh water demand, water shortages and for environmental protection. Water recycling is commonly seen as one of the main options to provide remedy for water shortage caused by the increase of the water demand and draughts as well as a response to some economical and environmental drivers. The main options for wastewater recycling are industri-al, irrigation, aquifer recharge and urban reuse (Pidou, M., 2006). Among the industrial wastewaters, the textile industry is long regarded as a water intensive sector, due to its high demand of water for all parts of its pro-cedures. Accordingly, textile wastewater includes quite a large variety of con-tents, chemicals, additives and different kinds of dyestuffs. The main environ-mental concern with this waste water is about the quantity and quality of the water discharged and the chemical load it carries. To illustrate, for each ton of fabric products, 20 – 350 m3 of water are consumed, which differs from the color and procedure used. The quality of the textile wastewater depends much on the employed coloring matters, dyestuffs, accompanying chemicals, as well as the process itself (Brik et al., 2006). MBR technology is recognised as a promising technology to provide water with reliable quality for reuse. It provides safely reuse water for non-potable use. But the treated textile wastewater by MBR technology alone can’t comply with the reuse or discharge standard in many countries due to its colouring matters and dyestuffs remained in the effluent, if otherwise, MBR is associated with other technology like NF, RO, other processes or the applied membrane is modified or a novel MBR is applied. Fouling is another limiting factor for worldwide application of MBR technology especially in high-strength industri-al wastewater like textile wastewater. Moreover, membrane fouling is regarded as the most important bottleneck for further development of MBR technology. It is the main limitation for faster development of this process, particularly when it leads to flux losses that cleaning cannot restore (Howell et al. 2004). In this thesis work, a novel membrane bioreactor (MBR) process was devel-oped by modifying a applied commercial PES UF membrane in MBR module by nano-structured novel coating through polymerisable bicontinuous micro-emulsion (PBM) process with the purpose of having higher hydrophilicity and low fouling propensity. Before starting the MBR experiments, some characteri-sation tests such as SEM, AFM images analysis, roughness measurements, pore geometry, contact angel, standard salt rejections, model textile dye rejec-tions were performed. In addition, fouling tests using two laboratory cross flow testing units were conducted as well. To reach the ultimate goal of research, 6 sheets of novel coated membranes with size of 30 cm × 30 cm were prepared and these were used to prepare a three-envelope MBR module of 25 cm × 25 cm in size (total membrane area 0.33 m2) similar to that of a commercially available three-envelope PES UF MBR module. This novel MBR module was tested in a submerged lab-scale MBR pilot plant (tank volume ca. 60 L) for about 6 months using model textile dye wastewater (MTDW) as test media for all experiments with the aim of having uniform compositions with respect to time. The tests were done based on carefully selected operation conditions. Prior to testing of the novel membrane module MBR, experiments were carried out with a commercial PES UF MBR module using the same pilot plant set up and the same selected operating conditions for about 10 months. After comple-tion of trials with the novel coated MBR module, similar experiments were carried out again with a commercial PES UF MBR module to check the simi-larity of the biological sludge conditions and other operation conditions as well. In short, the sequences of the experiments were as follows: Commercial PES UF MBR (10 months) →novel membrane coated MBR (6 months)→PES UF MBR (1.5 months) The ultimate goal of the experiments was to compare the results between the commercial MBR and novel coated MBR module in order to demonstrate im-provement regarding fouling propensity and permeate water quality. The performance analysis shows that the novel coated MBR module compared to the commercial MBR module has 7% points higher COD removal efficien-cy, 20% points higher blue dye removal efficiency, high antifoul-ing/antimicrobial properties, resulting in a very low-fluctuating and highly ro-bust MBR process which looks promising with regard to economic viability. Since the newly developed MBR module worked excellent on laboratory scale it consequently should be deployed at an industrial site to be tested with real ii wastewater. Therefore, this novel three-envelope MBR module is on the way to be tested with real wastewater in a textile factory in Tunisia. The findings of these on-site pilot trials will serve as a basis for further improvement and even-tually pilot trails with larger membrane area will be addressedUniversità della Calabri

    Solar powered nanofiltration for drinking water production from fluoride-containing groundwater: a pilot study towards developing a sustainable and low-cost treatment plant

    No full text
    The following paper summarizes the findings of a pilot study to develop a simple, low-cost, holistic water concept on fluoride removal from groundwater in rural communities of Tanzania; an ideal representative community for other areas in the world with similar problems. A small photovoltaic powered nanofiltration (NF) pilot plant was installed at a vocational training center in Boma Ng´ombe in northern Tanzania. The groundwater in this region is contaminated with fluoride at very high concentrations of up to 60 mg/L. The pilot plant was equipped with a single membrane module containing a spiral wound 4040 membrane NF90 of Dow Water & Process Solutions and was successfully operated over a nine-month period. The membrane removed more than 98% of fluoride. In fact, the fluoride concentration in the permeate was always less than 1 mg/L, which is in agreement with the WHO recommended standard (1.5 mg/L). Permeate was also used as weekly flush medium, so no chemical cleaning was required. Aside from permeate (drinking water) concentrate was also used for washing and flushing the toilets. In conclusion, the use of solar PV power (2.25 KW P ) for approximately 2.5 h per day allowed producing about 240 L/h of permeate on average. Therefore, the sustainability of the process and suitability for the Tanzanian communities was proved

    Fabrication and performance evaluation of polyethersulfone membranes with varying compositions of polyvinylpyrrolidone and polyethylene glycol for textile wastewater treatment using MBR

    No full text
    Various industries polluting the water bodies by discharging untreated wastewater directly into the environment and conventional wastewater treatments are often insufficient for effectively treating the pollutants. However, membrane bioreactors (MBRs) offer a promising solution for wastewater treatment where membrane serving as the heart of the system. In this study, polyethersulfone (PES) was used as the membrane material and hydrophilicity of the membranes were tuned up by mixing with hydrophilic additives such as polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) and the membranes have shown promising results in treating wastewater, particularly in terms of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and color removal. For example, PES-PEG membrane demonstrated COD, BOD, and color removal of 96 %, 94 %, and 92 %, respectively while those were 95 %, 94 %, and 92 %, respectively for PES-based commercial membrane. Although the performances of fabricated membranes were comparable to that of commercial membrane in COD, BOD, and color removal efficiencies, there is room for improvement in permeate yields. Notably, the average permeate efficiency for MBR modules produced with PES-3PEG and PES-5PVP membranes was recorded as 47 % (18 L/m2h) and 13 % (5 L/m2h) respectively of the commercial membrane (38 L/m2h). Despite the variance in permeate yields, the fabricated membranes also showcased significant efficacy in removing microorganisms, a crucial aspect of wastewater treatment. Their performance in this regard proved highly comparable to that of the commercial membrane, emphasizing the potential of these fabricated membranes in enhancing the wastewater treatment

    A step forward to a more efficient wastewater treatment by membrane surface modification via polymerizable bicontinuous microemulsion

    Get PDF
    An innovative hydrophilic and anti-fouling coating material for application in membrane technology for wastewater treatment has been developed by polymerization of a polymerizable bicontinuous microemulsion (PBM) and used for surface modification of a commercial flat polyethersulfone (PES) membrane. The novel nanostructured coating has been produced using acryloyloxyundecyltriethylammonium bromide (AUTEAB) as a co-polymerizable surfactant, obtained through a synthetic method characterized by a lower cost and a higher reproducibility compared to other known polymerizable surfactants. The novel composite membranes have been characterized and compared with the uncoated PES membranes. Coated membranes resulted in a smoother surface and a higher hydrophilicity with respect to the uncoated ones, and showed a particular nano-size channel-like morphology making them highly resistant to the fouling phenomenon. The covalent anchorage of the surfactant on the membrane surface ensured the embedment of the molecule in the polymeric matrix avoiding its leaching and also leading the coated membranes to have significant antimicrobial activity, which is very important for reducing the biofouling phenomenon.All these aspects make the tailored coating material an ideal and efficient coating for modifications of commercial membrane surfaces, to be used in membrane processes in wastewater treatment.European Union within the BioNexGen project EU-F17/project (CP-FP-246039-2
    corecore