309 research outputs found
Compound Multiple Access Channels with Partial Cooperation
A two-user discrete memoryless compound multiple access channel with a common
message and conferencing decoders is considered. The capacity region is
characterized in the special cases of physically degraded channels and
unidirectional cooperation, and achievable rate regions are provided for the
general case. The results are then extended to the corresponding Gaussian
model. In the Gaussian setup, the provided achievable rates are shown to lie
within some constant number of bits from the boundary of the capacity region in
several special cases. An alternative model, in which the encoders are
connected by conferencing links rather than having a common message, is studied
as well, and the capacity region for this model is also determined for the
cases of physically degraded channels and unidirectional cooperation. Numerical
results are also provided to obtain insights about the potential gains of
conferencing at the decoders and encoders.Comment: Submitted to IEEE Transactions on Information Theor
Joint Interference Alignment and Bi-Directional Scheduling for MIMO Two-Way Multi-Link Networks
By means of the emerging technique of dynamic Time Division Duplex (TDD), the
switching point between uplink and downlink transmissions can be optimized
across a multi-cell system in order to reduce the impact of inter-cell
interference. It has been recently recognized that optimizing also the order in
which uplink and downlink transmissions, or more generally the two directions
of a two-way link, are scheduled can lead to significant benefits in terms of
interference reduction. In this work, the optimization of bi-directional
scheduling is investigated in conjunction with the design of linear precoding
and equalization for a general multi-link MIMO two-way system. A simple
algorithm is proposed that performs the joint optimization of the ordering of
the transmissions in the two directions of the two-way links and of the linear
transceivers, with the aim of minimizing the interference leakage power.
Numerical results demonstrate the effectiveness of the proposed strategy.Comment: To be presented at ICC 2015, 6 pages, 7 figure
Relaying Simultaneous Multicast Messages
The problem of multicasting multiple messages with the help of a relay, which
may also have an independent message of its own to multicast, is considered. As
a first step to address this general model, referred to as the compound
multiple access channel with a relay (cMACr), the capacity region of the
multiple access channel with a "cognitive" relay is characterized, including
the cases of partial and rate-limited cognition. Achievable rate regions for
the cMACr model are then presented based on decode-and-forward (DF) and
compress-and-forward (CF) relaying strategies. Moreover, an outer bound is
derived for the special case in which each transmitter has a direct link to one
of the receivers while the connection to the other receiver is enabled only
through the relay terminal. Numerical results for the Gaussian channel are also
provided.Comment: This paper was presented at the IEEE Information Theory Workshop,
Volos, Greece, June 200
Quantum correlations of twophoton polarization states in the parametric down-conversion process
We consider correlation properties of twophoton polarization states in the
parametric down-conversion process. In our description of polarization states
we take into account the simultaneous presence of colored and white noise in
the density matrix. Within the considered model we study the dependence of the
von Neumann entropy on the noise amount in the system and derive the
separability condition for the density matrix of twophoton polarization state,
using Perec-Horodecki criterion and majorization criterion. Then the dependence
of the Bell operator (in CHSH form) on noise is studied. As a result, we give a
condition for determining the presence of quantum correlation states in
experimental measurements of the Bell operator. Finally, we compare our
calculations with experimental data [doi:10.1103/PhysRevA.73.062110] and give a
noise amount estimation in the photon polarization state considered there.Comment: 10 pages, 7 figures; corrected typo
Bounds on the Capacity of the Relay Channel with Noncausal State Information at Source
We consider a three-terminal state-dependent relay channel with the channel
state available non-causally at only the source. Such a model may be of
interest for node cooperation in the framework of cognition, i.e.,
collaborative signal transmission involving cognitive and non-cognitive radios.
We study the capacity of this communication model. One principal problem in
this setup is caused by the relay's not knowing the channel state. In the
discrete memoryless (DM) case, we establish lower bounds on channel capacity.
For the Gaussian case, we derive lower and upper bounds on the channel
capacity. The upper bound is strictly better than the cut-set upper bound. We
show that one of the developed lower bounds comes close to the upper bound,
asymptotically, for certain ranges of rates.Comment: 5 pages, submitted to 2010 IEEE International Symposium on
Information Theor
- …