117 research outputs found

    Wireless Power Transmission

    Full text link
    Wireless Power Transmission through inductive coupling is one of the new emerging technologies that will bring tremendous change in human life. Due to shortage of time and fast running life style it is difficult to carry the complete charging set which increases the demand of the wirelessly charged products. Wireless power transfer is one of the simplest and inexpensive ways of charging as it eliminate the use of conventional copper cables and current carrying wires. In this paper, a technique is devised for a wireless power transfer through induction, and a feasible design is modeled accordingly. The technique used in this paper is the inductive coupling as it the easiest method of high efficiency power transfer without using wired medium (eg, transformer). In this paper the result of experiment is given which is done to check wireless working of a simple application by glowing LED, and charging a mobile. Wireless power transfer is not much affected by placing hurdles likes books, hands and plastic between transceiver and receiver. This research work focuses on the study of wireless power transfer for the purpose of transferring cut and dried amount of energy at maximum efficiency

    To monitor the adverse drug reactions and safety of medicines commonly prescribed at obstetrics and gynaecology unit in a tertiary care hospital

    Get PDF
    Adverse drug reactions are the recognized hazards of drug therapy and they can occur with any class of drugs. Any substance that is capable of producing a therapeutic effect can also produce unwanted or adverse effects. Adverse Drug Reactions result in increased healthcare cost due to the need of some interventions and increased hospital stay. The study was undertaken to monitor the adverse drug reactions to medicines commonly prescribed at obstetrics and gynaecology unit in a tertiary care hospital, to establish ten most commonly prescribed medicines in this unit that gave maximum adverse drug reactions and to determine the list of commonly affected organ systems and assess their causality. In this Retrospective, non-interventional study a total of 63 adverse drug reaction reports were collected from 249 patients. The most common medicine that caused maximum ADRs was Oxytocin 10 (15.87%). Other frequently used drugs were Amikacin, Methylergometrine, Mifepristone+Misoprostol,Levonorgestrel+Ethinylestradiol, Cefotaxim+sulbactam, Cefixime+Ofloxacin, Mifepristone alone,Clomifene citrate, Tramadol. The most commonly affected organ system was cardio-vascular system 12 (19.04%).The assessment by Naranjo’s scale showed that out of 63 ADRs, 41 (65.07%) ADRs were probably related to drugs, 21 (33.33%) ADRs were possibly related to drugs and 1 (1.58%) ADR was doubtful. WHO causality assessment scale revealed that out of 63 ADRs, 51(80.95%) ADRs were probable or likely, 12(19.04%) ADRs were possible. It was observed that safe medicines were prescribed in obstetrics and gynaecology department as per FDA category A with no banned drugs .However, there is a need to sensitize the doctors to prescribe rationally and emphasize this aspect in under and post graduate medical teaching as well. The health system needs to promote spontaneous reporting of Adverse Drug Reactions from all health care professionals and the public at large in a well structured programme to build synergies for monitoring ADR in the country. Also proper documentation and periodic reporting to regional pharmacovigilance centres should be encouraged to arrive at meaningful conclusion on safety issue of medicines and thereby reduce considerably social and economic consequences of ADRs

    Randomized, Noncomparative, Phase II Trial of Early Switch From Docetaxel to Cabazitaxel or Vice Versa, With Integrated Biomarker Analysis, in Men With Chemotherapy-Naïve, Metastatic, Castration-Resistant Prostate Cancer

    Get PDF
    Purpose The TAXYNERGY trial ( ClinicalTrials.gov identifier: NCT01718353) evaluated clinical benefit from early taxane switch and circulating tumor cell (CTC) biomarkers to interrogate mechanisms of sensitivity or resistance to taxanes in men with chemotherapy-naïve, metastatic, castration-resistant prostate cancer. Patients and Methods Patients were randomly assigned 2:1 to docetaxel or cabazitaxel. Men who did not achieve ≥ 30% prostate-specific antigen (PSA) decline by cycle 4 (C4) switched taxane. The primary clinical endpoint was confirmed ≥ 50% PSA decline versus historical control (TAX327). The primary biomarker endpoint was analysis of post-treatment CTCs to confirm the hypothesis that clinical response was associated with taxane drug-target engagement, evidenced by decreased percent androgen receptor nuclear localization (%ARNL) and increased microtubule bundling. Results Sixty-three patients were randomly assigned to docetaxel (n = 41) or cabazitaxel (n = 22); 44.4% received prior potent androgen receptor-targeted therapy. Overall, 35 patients (55.6%) had confirmed ≥ 50% PSA responses, exceeding the historical control rate of 45.4% (TAX327). Of 61 treated patients, 33 (54.1%) had ≥ 30% PSA declines by C4 and did not switch taxane, 15 patients (24.6%) who did not achieve ≥ 30% PSA declines by C4 switched taxane, and 13 patients (21.3%) discontinued therapy before or at C4. Of patients switching taxane, 46.7% subsequently achieved ≥ 50% PSA decrease. In 26 CTC-evaluable patients, taxane-induced decrease in %ARNL (cycle 1 day 1 v cycle 1 day 8) was associated with a higher rate of ≥ 50% PSA decrease at C4 ( P = .009). Median composite progression-free survival was 9.1 months (95% CI, 4.9 to 11.7 months); median overall survival was not reached at 14 months. Common grade 3 or 4 adverse events included fatigue (13.1%) and febrile neutropenia (11.5%). Conclusion The early taxane switch strategy was associated with improved PSA response rates versus TAX327. Taxane-induced shifts in %ARNL may serve as an early biomarker of clinical benefit in patients treated with taxanes

    Gene expression profiling reveals different pathways related to Abl and other genes that cooperate with c-Myc in a model of plasma cell neoplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To elucidate the genes involved in the neoplastic transformation of B cells, global gene expression profiles were generated using Affymetrix U74Av2 microarrays, containing 12,488 genes, for four different groups of mouse B-cell lymphomas and six subtypes of pristane-induced mouse plasma cell tumors, three of which developed much earlier than the others.</p> <p>Results</p> <p>Unsupervised hierarchical cluster analysis exhibited two main sub-clusters of samples: a B-cell lymphoma cluster and a plasma cell tumor cluster with subclusters reflecting mechanism of induction. This report represents the first step in using global gene expression to investigate molecular signatures related to the role of cooperating oncogenes in a model of Myc-induced carcinogenesis. Within a single subgroup, e.g., ABPCs, plasma cell tumors that contained typical T(12;15) chromosomal translocations did not display gene expression patterns distinct from those with variant T(6;15) translocations, in which the breakpoint was in the <it>Pvt-1 </it>locus, 230 kb 3' of c-<it>Myc</it>, suggesting that c-<it>Myc </it>activation was the initiating factor in both. When integrated with previously published Affymetrix array data from human multiple myelomas, the IL-6-transgenic subset of mouse plasma cell tumors clustered more closely with MM1 subsets of human myelomas, slow-appearing plasma cell tumors clustered together with MM2, while plasma cell tumors accelerated by v-Abl clustered with the more aggressive MM3-MM4 myeloma subsets. Slow-appearing plasma cell tumors expressed <it>Socs1 </it>and <it>Socs2 </it>but v-<it>Abl</it>-accelerated plasma cell tumors expressed 4–5 times as much. Both v-<it>Abl</it>-accelerated and non-v-<it>Ab</it>l-associated tumors exhibited phosphorylated STAT 1 and 3, but only v-Abl-accelerated plasma cell tumors lost viability and STAT 1 and 3 phosphorylation when cultured in the presence of the v-Abl kinase inhibitor, STI-571. These data suggest that the Jak/Stat pathway was critical in the transformation acceleration by v-Abl and that v-Abl activity remained essential throughout the life of the tumors, not just in their acceleration. A different pathway appears to predominate in the more slowly arising plasma cell tumors.</p> <p>Conclusion</p> <p>Gene expression profiling differentiates not only B-cell lymphomas from plasma cell tumors but also distinguishes slow from accelerated plasma cell tumors. These data and those obtained from the sensitivity of v-Abl-accelerated plasma cell tumors and their phosphorylated STAT proteins indicate that these similar tumors utilize different signaling pathways but share a common initiating genetic lesion, a c-<it>Myc</it>-activating chromosome translocation.</p

    Lack of Wdr13 Gene in Mice Leads to Enhanced Pancreatic Beta Cell Proliferation, Hyperinsulinemia and Mild Obesity

    Get PDF
    WD-repeat proteins are very diverse, yet these are structurally related proteins that participate in a wide range of cellular functions. WDR13, a member of this family, is conserved from fishes to humans and localizes into the nucleus. To understand the in vivo function(s) of Wdr13 gene, we have created and characterized a mutant mouse strain lacking this gene. The mutant mice had higher serum insulin levels and increased pancreatic islet mass as a result of enhanced beta cell proliferation. While a known cell cycle inhibitor, p21, was downregulated in the mutant islets, over expression of WDR13 in the pancreatic beta cell line (MIN6) resulted in upregulation of p21, accompanied by retardation of cell proliferation. We suggest that WDR13 is a novel negative regulator of the pancreatic beta cell proliferation. Given the higher insulin levels and better glucose clearance in Wdr13 gene deficient mice, we propose that this protein may be a potential candidate drug target for ameliorating impaired glucose metabolism in diabetes

    Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Himalayan zones, with dense forest vegetation, cover a fifth part of India and store a third part of the country reserves of soil organic carbon (SOC). However, the details of altitudinal distribution of these carbon stocks, which are vulnerable to forest management and climate change impacts, are not well known.</p> <p>Results</p> <p>This article reports the results of measuring the stocks of SOC along altitudinal gradients. The study was carried out in the coniferous subtropical and broadleaf temperate forests of Garhwal Himalaya. The stocks of SOC were found to be decreasing with altitude: from 185.6 to 160.8 t C ha<sup>-1 </sup>and from 141.6 to 124.8 t C ha<sup>-1 </sup>in temperature (<it>Quercus leucotrichophora</it>) and subtropical (<it>Pinus roxburghii</it>) forests, respectively.</p> <p>Conclusion</p> <p>The results of this study lead to conclusion that the ability of soil to stabilize soil organic matter depends negatively on altitude and call for comprehensive theoretical explanation</p

    Endocytic pH regulates cell surface localization of glycolipid antigen loaded CD1d complexes

    Get PDF
    Invariant natural killer T (iNKT) cells recognize glycolipid antigens presented by CD1d, an antigen presenting protein structurally similar to MHC class I. Stimulation of iNKT cells by glycolipid antigens can induce strong immune responses in vivo, with rapid production of a wide variety of cytokines including those classically associated with either T helper type 1 (Th1) or type 2 (Th2) responses. Alterations in the lipid tails or other portions of CD1d–presented glycolipid ligands can bias the iNKT response towards production of predominantly Th1 or Th2 associated cytokines. However, the mechanism accounting for this structure-activity relationship remains controversial. The Th1-biasing glycolipids have been found to consistently form complexes with CD1d that preferentially localize to plasma membrane cholesterol rich microdomains (lipid rafts), whereas CD1d complexes formed with Th2-biasing ligands are excluded from these microdomains. Here we show that neutralization of endosomal pH enhanced localization of CD1d complexes containing Th2-biasing glycolipids to plasma membrane lipid rafts of antigen presenting cells (APC). Transfer of APCs presenting these “stabilized” CD1d/αGC complexes into mice resulted in immune responses with a more prominent Th1-like bias, characterized by increased NK cell transactivation and interferon-γ production. These findings support a model in which low endosomal pH controls stability and lipid raft localization of CD1d–glycolipid complexes to regulate the outcome of iNKT cell mediated responses

    Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria

    Get PDF
    Background: The Indian city of Chennai is endemic for malaria and the known local malaria vector is Anopheles stephensi. Plasmodium vivax is the predominant malaria parasite species, though Plasmodium falciparum is present at low levels. The urban ecotype of malaria prevails in Chennai with perennial transmission despite vector surveillance by the Urban Malaria Scheme (UMS) of the National Vector Borne Disease Control Programme (NVBDCP). Understanding the feeding and resting preferences, together with the transmission potential of adult vectors in the area is essential in effective planning and execution of improved vector control measures. Methods: A yearlong survey was carried out in cattle sheds and human dwellings to check the resting, feeding preferences and transmission potential of An. stephensi. The gonotrophic status, age structure, resting and host seeking preferences were studied. The infection rate in An. stephensi and Anopheles subpictus were analysed by circumsporozoite ELISA (CS-ELISA). Results: Adult vectors were found more frequently and at higher densities in cattle sheds than human dwellings. The overall Human Blood Index (HBI) was 0.009 indicating the vectors to be strongly zoophilic. Among the vectors collected from human dwellings, 94.2% were from thatched structures and the remaining 5.8% from tiled and asbestos structures. 57.75% of the dissected vectors were nulliparous whereas, 35.83% were monoparous and the rest 6.42% biparous. Sporozoite positivity rate was 0.55% (4/720) and 1.92% (1/52) for An. stephensi collected from cattle sheds and human dwellings, respectively. One adult An. subpictus (1/155) was also found to be infected with P. falciparum. Conclusions: Control of the adult vector populations can be successful only by understanding the resting and feeding preferences. The present study indicates that adult vectors predominantly feed on cattle and cattle sheds are the preferred resting place, possibly due to easy availability of blood meal source and lack of any insecticide or repellent pressure. Hence targeting these resting sites with cost effective, socially acceptable intervention tools, together with effective larval source management to reduce vector breeding, could provide an improved integrated vector management strategy to help drive down malaria transmission and assist in India's plan to eliminate malaria by 2030
    corecore