8 research outputs found

    In vivo and in vitro analysis of the retinal voltage dependent L-type Ca2+channel Ca 1.4 function

    Get PDF

    In vivo and in vitro analysis of the retinal voltage dependent L-type Ca2+channel Ca 1.4 function

    Get PDF

    Arrhythmogenic effects of mutated L-type Ca 2+-channels on an optogenetically paced muscular pump in Caenorhabditis elegans

    No full text
    Cardiac arrhythmias are often associated with mutations in ion channels or other proteins. To enable drug development for distinct arrhythmias, model systems are required that allow implementing patient-specific mutations. We assessed a muscular pump in Caenorhabditis elegans. The pharynx utilizes homologues of most of the ion channels, pumps and transporters defining human cardiac physiology. To yield precise rhythmicity, we optically paced the pharynx using channelrhodopsin-2. We assessed pharynx pumping by extracellular recordings (electropharyngeograms--EPGs), and by a novel video-microscopy based method we developed, which allows analyzing multiple animals simultaneously. Mutations in the L-type VGCC (voltage-gated Ca(2+)-channel) EGL-19 caused prolonged pump duration, as found for analogous mutations in the Cav1.2 channel, associated with long QT syndrome. egl-19 mutations affected ability to pump at high frequency and induced arrhythmicity. The pharyngeal neurons did not influence these effects. We tested whether drugs could ameliorate arrhythmia in the optogenetically paced pharynx. The dihydropyridine analog Nemadipine A prolonged pump duration in wild type, and reduced or prolonged pump duration of distinct egl-19 alleles, thus indicating allele-specific effects. In sum, our model may allow screening of drug candidates affecting specific VGCCs mutations, and permit to better understand the effects of distinct mutations on a macroscopic level

    The use of tail-anchored protein chimeras to enhance liposomal cargo delivery

    No full text
    BackgroundLiposomes are employed as drug delivery vehicles offering a beneficial pharmacokinetic/distribution mechanism for in vivo therapeutics. Therapeutic liposomes can be designed to target specific cell types through the display of epitope-specific targeting peptides on their surface. The majority of peptides are currently attached by chemical modification of lipid constituents. Here we investigate an alternative and novel method of decorating liposomes with targeting ligand, using remotely and spontaneously inserting chimeric tail-anchored membrane (TA) proteins to drug loaded liposomes.Methods and resultsAn artificial TA protein chimera containing the transmembrane domain from the spontaneously inserting TA protein cytochrome b5 (Cytb5) provided a robust membrane tether for the incorporation of three different targeting moieties into preformed liposomes. The moieties investigated were the transactivator of transcription (TAT) peptide, the EGF-receptor binding sequence GE11 and the placental and tumour homing ligand CCGKRK. In all cases, TA protein insertion neither significantly altered the size of the liposomes nor reduced drug loading. The efficacy of this novel targeted delivery system was investigated using two human cell lines, HeLa M and BeWo. Short term incubation with one ligand-modified TA chimera, incorporating the TAT peptide, significantly enhanced liposomal delivery of the encapsulated carboxyfluorescein reporter.ConclusionThe Cytb5 TA was successfully employed as a membrane anchor for the incorporation of the desired peptide ligands into a liposomal drug delivery system, with minimal loss of cargo during insertion. This approach therefore provides a viable alternative to chemical conjugation and its potential to accommodate a wider range of targeting ligands may provide an opportunity for enhancing drug delivery
    corecore