348 research outputs found

    Feature issue introduction: Beyond Thin Films: Photonics with Ultrathin and Atomically Thin Materials

    Get PDF
    Rapid advances in nanotechnology have brought about the realization of material films that may comprise only as little as a few atomic layers. For example, semiconductors and metals of sub-10 nm thicknesses have been realized. Then, the graphene paradigm inspired a plethora of other 2D and quasi-2D materials. In this new era, materials have transcended beyond the traditional thin films to a domain of atomic-scale thicknesses, unleashing vast and unexplored possibilities for light-matter interactions. This Optical Materials Express virtual issue features a collection of thirty-five papers aiming to capture the current state-of-the art, trends and open research directions in photonics with ultrathin and atomically thin materials

    Metamaterials with conformational nonlinearity

    Get PDF
    Within a decade of fruitful development, metamaterials became a prominent area of research, bridging theoretical and applied electrodynamics, electrical engineering and material science. Being man-made structures, metamaterials offer a particularly useful playground to develop interdisciplinary concepts. Here we demonstrate a novel principle in metamaterial assembly which integrates electromagnetic, mechanical, and thermal responses within their elements. Through these mechanisms, the conformation of the meta-molecules changes, providing a dual mechanism for nonlinearity and offering nonlinear chirality. Our proposal opens a wide road towards further developments of nonlinear metamaterials and photonic structures, adding extra flexibility to their design and control

    Optical Cloaking with Non-Magnetic Metamaterials

    Get PDF
    Artificially structured metamaterials have enabled unprecedented flexibility in manipulating electromagnetic waves and producing new functionalities, including the cloak of invisibility based on coordinate transformation. Here we present the design of a non-magnetic cloak operating at optical frequencies. The principle and structure of the proposed cylindrical cloak are analyzed, and the general recipe for the implementation of such a device is provided. The cloaking performance is verified using full-wave finite-element simulations.Comment: 10 pages, 4 figure

    An invisibility cloak using silver nanowires

    Full text link
    In this paper, we use the parameter retrieval method together with an analytical effective medium approach to design a well-performed invisible cloak, which is based on an empirical revised version of the reduced cloak. The designed cloak can be implemented by silver nanowires with elliptical cross-sections embedded in a polymethyl methacrylate host. This cloak is numerically proved to be robust for both the inner hidden object as well as incoming detecting waves, and is much simpler thus easier to manufacture when compared with the earlier proposed one [Nat. Photon. 1, 224 (2007)].Comment: 7 pages, 4 figures, 2 table

    Past Achievements and Future Challenges in 3D Photonic Metamaterials

    Full text link
    Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallo-dielectric sub-wavelength building blocks that are densely packed into an effective material. This deceptively simple, yet powerful, truly revolutionary concept allows for achieving novel, unusual, and sometimes even unheard-of optical properties, such as magnetism at optical frequencies, negative refractive indices, large positive refractive indices, zero reflection via impedance matching, perfect absorption, giant circular dichroism, or enhanced nonlinear optical properties. Possible applications of metamaterials comprise ultrahigh-resolution imaging systems, compact polarization optics, and cloaking devices. This review describes the experimental progress recently made fabricating three-dimensional metamaterial structures and discusses some remaining future challenges

    Nonlinear Localization in Metamaterials

    Full text link
    Metamaterials, i.e., artificially structured ("synthetic") media comprising weakly coupled discrete elements, exhibit extraordinary properties and they hold a great promise for novel applications including super-resolution imaging, cloaking, hyperlensing, and optical transformation. Nonlinearity adds a new degree of freedom for metamaterial design that allows for tuneability and multistability, properties that may offer altogether new functionalities and electromagnetic characteristics. The combination of discreteness and nonlinearity may lead to intrinsic localization of the type of discrete breather in metallic, SQUID-based, and PT{\cal PT}-symmetric metamaterials. We review recent results demonstrating the generic appearance of breather excitations in these systems resulting from power-balance between intrinsic losses and input power, either by proper initialization or by purely dynamical procedures. Breather properties peculiar to each particular system are identified and discussed. Recent progress in the fabrication of low-loss, active and superconducting metamaterials, makes the experimental observation of breathers in principle possible with the proposed dynamical procedures.Comment: 19 pages, 14 figures, Invited (Review) Chapte

    Bethe-hole polarization analyser for the magnetic vector of light

    Get PDF
    The nature of light as an electromagnetic wave with transverse components has been confirmed using optical polarizers, which are sensitive to the orientation of the electric field. Recent advances in nanoscale optical technologies demand their magnetic counterpart, which can sense the orientation of the optical magnetic field. Here we report that subwavelength metallic apertures on infinite plane predominantly sense the magnetic field of light, establishing the orientation of the magnetic component of light as a separate entity from its electric counterpart. A subwavelength aperture combined with a tapered optical fibre probe can also serve as a nanoscale polarization analyser for the optical magnetic field, analogous to a nanoparticle sensing the local electric polarization. As proof of its functionality, we demonstrate the measurement of a magnetic field orientation that is parallel to the electric field, as well as a circularly polarized magnetic field in the presence of a linearly polarized electric field

    Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths

    Get PDF
    Propagating light beams with widths down to and below the optical wavelength require bulky large-aperture lenses and remain focused only for micrometric distances. Here, we report the observation of light beams that violate this localization/depth- of-focus law by shrinking as they propagate, allowing resolution to be maintained and increased over macroscopic propagation lengths. In nanodisordered ferroelectrics we observe a non-paraxial propagation of a sub-micrometre-sized beam for over 1,000 diffraction lengths, the narrowest visible beam reported to date. This unprecedented effect is caused by the nonlinear response of a dipolar glass, which transforms the leading opticalwave equation into a Klein-Gordon-type equation that describes a massive particle field. Our findings open the way to high-resolution optics over large depths of focus, and a route to merging bulk optics into nanodevices

    Scalable, ultra-resistant structural colors based on network metamaterials

    Get PDF
    Structural colors have drawn wide attention for their potential as a future printing technology for various applications, ranging from biomimetic tissues to adaptive camouflage materials. However, an efficient approach to realize robust colors with a scalable fabrication technique is still lacking, hampering the realization of practical applications with this platform. Here, we develop a new approach based on large-scale network metamaterials that combine dealloyed subwavelength structures at the nanoscale with lossless, ultra-thin dielectric coatings. By using theory and experiments, we show how subwavelength dielectric coatings control a mechanism of resonant light coupling with epsilon-near-zero regions generated in the metallic network, generating the formation of saturated structural colors that cover a wide portion of the spectrum. Ellipsometry measurements support the efficient observation of these colors, even at angles of 70°. The network-like architecture of these nanomaterials allows for high mechanical resistance, which is quantified in a series of nano-scratch tests. With such remarkable properties, these metastructures represent a robust design technology for real-world, large-scale commercial applications

    Self-assembly of Silver Nanoparticles and Multiwall Carbon Nanotubes on Decomposed GaAs Surfaces

    Get PDF
    Atomic Force Microscopy complemented by Photoluminescence and Reflection High Energy Electron Diffraction has been used to study self-assembly of silver nanoparticles and multiwall carbon nanotubes on thermally decomposed GaAs (100) surfaces. It has been shown that the decomposition leads to the formation of arsenic plate-like structures. Multiwall carbon nanotubes spin coated on the decomposed surfaces were mostly found to occupy the depressions between the plates and formed boundaries. While direct casting of silver nanoparticles is found to induce microdroplets. Annealing at 300°C was observed to contract the microdroplets into combined structures consisting of silver spots surrounded by silver rings. Moreover, casting of colloidal suspension consists of multiwall carbon nanotubes and silver nanoparticles is observed to cause the formation of 2D compact islands. Depending on the multiwall carbon nanotubes diameter, GaAs/multiwall carbon nanotubes/silver system exhibited photoluminescence with varying strength. Such assembly provides a possible bottom up facile way of roughness controlled fabrication of plasmonic systems on GaAs surfaces
    corecore