1,956 research outputs found

    Advection-Dominated Accretion with Infall and Outflows

    Full text link
    We present self-similar solutions for advection-dominated accretion flows with radial viscous force in the presence of outflows from the accretion flow or infall. The axisymmetric flow is treated in variables integrated over polar sections and the effects of infall and outflows on the accretion flow are parametrised for possible configurations compatible with the self-similar solution. We investigate the resulting accretion flows for three different viscosity laws and derive upper limits on the viscosity parameter alpha. In addition, we find a natural connection to non-rotating and spherical accretion with turbulent viscosity, which is assumed to persist even without differential rotation. Positive Bernoulli numbers for advection-dominated accretion allow a fraction of the gas to be expelled in an outflow and the upper limit on the viscosity predicts that outflows are inevitable for equations of state close to an ideal gas.Comment: 17 pages, 9 figures, accepted for publication in the Astrophysical Journa

    Heating and Cooling of Hot Accretion Flows by Non Local Radiation

    Full text link
    We consider non-local effects which arise when radiation emitted at one radius of an accretion disk either heats or cools gas at other radii through Compton scattering. We discuss three situations: 1. Radiation from the inner regions of an advection-dominated flow Compton cooling gas at intermediate radii and Compton heating gas at large radii. 2. Soft radiation from an outer thin accretion disk Compton cooling a hot one- or two-temperature flow on the inside. 3. Soft radiation from an inner thin accretion disk Compton cooling hot gas in a surrounding one-temperature flow. We describe how previous results are modified by these non-local interactions. We find that Compton heating or cooling of the gas by the radiation emitted in the inner regions of a hot flow is not important. Likewise, Compton cooling by the soft photons from an outer thin disk is negligible when the transition from a cold to a hot flow occurs at a radius greater than some minimum Rtr,minR_{tr,min}. However, if the hot flow terminates at R<Rtr,minR < R_{tr,min}, non-local cooling is so strong that the hot gas is cooled to a thin disk configuration in a runaway process. In the case of a thin disk surrounded by a hot one-temperature flow, we find that Compton cooling by soft radiation dominates over local cooling in the hot gas for \dot{M} \gsim 10^{-3} \alpha \dot{M}_{Edd}, and R \lsim 10^4 R_{Schw}. As a result, the maximum accretion rate for which an advection-dominated one-temperature solution exists, decreases by a factor of ∌10\sim 10, compared to the value computed under an assumption of local energy balance.Comment: LaTeX aaspp.sty, 25 pages, and 6 figures; to appear in Ap

    Large Scale B-Field in Stationary Accretion Disks

    Full text link
    We reconsider the problem of the formation of a large-scale magnetic field in the accretion disks around black holes. In contrast with previous work we take into account the nonuniform vertical structure of the disk. The high electrical conductivity of the outer layers of the disk prevents the outward diffusion of the magnetic field. This implies a stationary state with a strong magnetic field in the inner parts of the accretion disk close to the black hole.Comment: 5 pages, 2 figure

    Two-Dimensional Hydrodynamic Simulations of Convection in Radiation-Dominated Accretion Disks

    Get PDF
    The standard equilibrium for radiation-dominated accretion disks has long been known to be viscously, thermally, and convectively unstable, but the nonlinear development of these instabilities---hence the actual state of such disks---has not yet been identified. By performing local two-dimensional hydrodynamic simulations of disks, we demonstrate that convective motions can release heat sufficiently rapidly as to substantially alter the vertical structure of the disk. If the dissipation rate within a vertical column is proportional to its mass, the disk settles into a new configuration thinner by a factor of two than the standard radiation-supported equilibrium. If, on the other hand, the vertically-integrated dissipation rate is proportional to the vertically-integrated total pressure, the disk is subject to the well-known thermal instability. Convection, however, biases the development of this instability toward collapse. The end result of such a collapse is a gas pressure-dominated equilibrium at the original column density.Comment: 10 pages, 7 figures, accepted for publication in ApJ. Please send comments to [email protected]

    Evidence For Advective Flow From Multi-Wavelength Observations Of Nova Muscae

    Get PDF
    We model the UV/optical spectrum of the black hole binary Nova Muscae as a sum of black body emissions from the outer region of an accretion disk. We show for self-consistency that scattering effects in this region are not important. The black hole mass (M≈6M⊙M \approx 6 M_\odot), the inclination angle (Ό≈0.5\mu \approx 0.5) and the distance to the source (D≈5D \approx 5 kpc) have been constrained by optical observations during quiescence (Orosz et al. 1996). Using these values we find that the accretion rate during the peak was M˙≈8×1019{\dot M} \approx 8 \times 10^{19} g sec−1^{-1} and subsequently decayed exponentially. We define a radiative fraction (ff) to be the ratio of the X-ray energy luminosity to the total gravitational power dissipated for a keplerian accretion disk. We find that f≈0.1f \approx 0.1 and remains nearly constant during the Ultra-soft and Soft spectral states. Thus for these states, the inner region of the accretion disk is advection dominated. ff probably increased to ≈0.5\approx 0.5 during the Hard state and finally decreased to ≈0.03\approx 0.03 as the source returned to quiescence.Comment: 5 figures. uses aasms4.sty, accepted by Ap

    A Cosmic Battery Reconsidered

    Get PDF
    We revisit the problem of magnetic field generation in accretion flows onto black holes owing to the excess radiation force on electrons. This excess force may arise from the Poynting-Robertson effect. Instead of a recent claim of the generation of dynamically important magnetic fields, we establish the validity of earlier results from 1977 which show only small magnetic fields are generated. The radiative force causes the magnetic field to initially grow linearly with time. However, this linear growth holds for only a {\it restricted} time interval which is of the order of the accretion time of the matter. The large magnetic fields recently found result from the fact that the linear growth is unrestricted. A model of the Poynting-Robertson magnetic field generation close to the horizon of a Schwarzschild black hole is solved exactly using General Relativity, and the field is also found to be dynamically insignificant. These weak magnetic fields may however be important as seed fields for dynamos.Comment: Astrophysical Journal (accepted

    Dissipation Instability in the Accretion Disk

    Full text link
    The model of a geometrically thin gaseous disk in the external gravitational potential is considered. The dinamics of small nonaxisymmetric perturbations in the plane of the accretion disk with dissipative effects is investigated. It is showed, that conditions of development and parameters of unstable oscillation modes in the opticaly thick accretion disk are strongly depended on the models of viscosity and opacity.Comment: Plain TeX, 6 pages, 2 figures (GIF), Submitted to Astron. Astrophys. Transaction

    New composite models of partially ionized protoplanetary disks

    Full text link
    We study an accretion disk in which three different regions may coexist: MHD turbulent regions, dead zones and gravitationally unstable regions. Although the dead zones are stable, there is some transport due to the Reynolds stress associated with waves emitted from the turbulent layers. We model the transport in each of the different regions by its own α\alpha parameter, this being 10 to 10310^{3} times smaller in dead zones than in active layers. In gravitationally unstable regions, α\alpha is determined by the fact that the disk self-adjusts to a state of marginal stability. We construct steady-state models of such disks. We find that for uniform mass flow, the disk has to be more massive, hotter and thicker at the radii where there is a dead zone. In disks in which the dead zone is very massive, gravitational instabilities are present. Whether such models are realistic or not depends on whether hydrodynamical fluctuations driven by the turbulent layers can penetrate all the way inside the dead zone. This may be more easily achieved when the ratio of the mass of the active layer to that of the dead zone is relatively large, which in our models corresponds to α\alpha in the dead zone being about 10% of α\alpha in the active layers. If the disk is at some stage of its evolution not in steady-state, then the surface density will evolve toward the steady-state solution. However, if α\alpha in the dead zone is much smaller than in the active zone, the timescale for the parts of the disk beyond a few AU to reach steady-state may become longer than the disk lifetime. Steady-state disks with dead zones are a more favorable environment for planet formation than standard disks, since the dead zone is typically 10 times more massive than a corresponding turbulent zone at the same location.Comment: 13 pages, 5 figures, accepted for publication in Ap

    Constraints on the Formation of the Planet Around HD188753A

    Full text link
    The claimed discovery of a Jupiter-mass planet in the close triple star system HD 188753 poses a problem for planet formation theory. A circumstellar disk around the planet's parent star would be truncated close to the star, leaving little material available for planet formation. In this paper, we attempt to model a protoplanetary disk around HD 188753A using a fairly simple alpha-disk model, exploring a range of parameters constrained by observations of T Tauri-type stars. The disk is truncated to within 1.5 to 2.7 AU, depending on model parameters. We find that the in situ formation of the planet around HD 188753A is implausible.Comment: Accepted version, to appear in ApJ. 23 pages, 5 figures (3 in color

    A Local One-Zone Model of MHD Turbulence in Dwarf Nova Disks

    Get PDF
    The evolution of the magnetorotational instability (MRI) during the transition from outburst to quiescence in a dwarf nova disk is investigated using three-dimensional MHD simulations. The shearing box approximation is adopted for the analysis, so that the efficiency of angular momentum transport is studied in a small local patch of the disk: this is usually referred as to a one-zone model. To take account of the low ionization fraction of the disk, the induction equation includes both ohmic dissipation and the Hall effect. We induce a transition from outburst to quiescence by an instantaneous decrease of the temperature. The evolution of the MRI during the transition is found to be very sensitive to the temperature of the quiescent disk. As long as the temperature is higher than a critical value of about 2000 K, MHD turbulence and angular momentum transport is sustained by the MRI. However, MHD turbulence dies away within an orbital time if the temperature falls below this critical value. In this case, the stress drops off by more than 2 orders of magnitude, and is dominated by the Reynolds stress associated with the remnant motions from the outburst. The critical temperature depends slightly on the distance from the central star and the local density of the disk.Comment: 20 pages, 2 tables, 6 figures, accepted for publication in Ap
    • 

    corecore