948 research outputs found

    Long-term Nonlinear Behaviour of the Magnetorotational Instability in a Localised Model of an Accretion Disc

    Get PDF
    For more than a decade, the so-called shearing box model has been used to study the fundamental local dynamics of accretion discs. This approach has proved to be very useful because it allows high resolution and long term studies to be carried out, studies that would not be possible for a global disc. Localised disc studies have largely focused on examining the rate of enhanced transport of angular momentum, essentially a sum of the Reynolds and Maxwell stresses. The dominant radial-azimuthal component of this stress tensor is, in the classic Shakura-Sunayaev model, expressed as a constant alpha times the pressure. Previous studies have estimated alpha based on a modest number of orbital times. Here we use much longer baselines, and perform a cumulative average for alpha. Great care must be exercised when trying to extract numerical alpha values from simulations: dissipation scales, computational box aspect ratio, and even numerical algorithms all affect the result. This study suggests that estimating alpha becomes more, not less, difficult as computational power increases.Comment: 10 pages, 10 figures, 2 tables, accepted by MNRA

    Planet Shadows in Protoplanetary Disks. I: Temperature Perturbations

    Full text link
    Planets embedded in optically thick passive accretion disks are expected to produce perturbations in the density and temperature structure of the disk. We calculate the magnitudes of these perturbations for a range of planet masses and distances. The model predicts the formation of a shadow at the position of the planet paired with a brightening just beyond the shadow. We improve on previous work on the subject by self-consistently calculating the temperature and density structures under the assumption of hydrostatic equilibrium and taking the full three-dimensional shape of the disk into account rather than assuming a plane-parallel disk. While the excursion in temperatures is less than in previous models, the spatial size of the perturbation is larger. We demonstrate that a self-consistent calculation of the density and temperature structure of the disk has a large effect on the disk model. In addition, the temperature structure in the disk is highly sensitive to the angle of incidence of stellar irradition at the surface, so accurately calculating the shape of the disk surface is crucial for modeling the thermal structure of the disk.Comment: 14 pages, 14 figures. To appear in Ap

    On the Low and High Frequency Correlation in Quasi-Periodic Oscillations Among White Dwarfs, Neutron Star and Black Hole Binaries

    Get PDF
    We interpret the correlation over five orders of magnitude between high frequency and low frequency in a quasi-periodic oscillations (QPO) found by Psaltis, Belloni & van der Klis (1999) for black hole (BH), neutron star (NS) systems and then extended by Mauche (2002) to white dwarf (WD) binaries. We argue that the observed correlation is a natural consequence of the Keplerian disk flow adjustment to the innermost sub-Keplerian boundary conditions near the central object. In the framework of the transition layer model the high frequency is related to the Keplerian frequency at the outer (adjustment) radius and the low frequency is related to the magnetoacoustic oscillation (MA) frequency. Using a relation between the MA frequency the magnetic and gas pressure and the density and the hydrostatic equilibrium condition in the disk we infer a linear correlation the Keplerian frequency and the MA frequency. We estimate the magnetic field strength near the TL outer radius for BHs NSs and WDs. The fact that the observed high-low frequency correlation over five orders of magnitude is valid for BHs, NSs, and down to WDs strongly rules out relativistic models for QPO phenomena. We come to the conclusion that the QPOs observations indicate the adjustment of the geometrically thin disk to sub-Keplerian motion near the central object. This effect is a common feature for a wide class of systems, starting from white dwarf binaries up to black hole binaries.Comment: 8 pages, 1 figure, accepted for publication in the ApJ. Letters 2002 August

    Constraints on the Formation of the Planet Around HD188753A

    Full text link
    The claimed discovery of a Jupiter-mass planet in the close triple star system HD 188753 poses a problem for planet formation theory. A circumstellar disk around the planet's parent star would be truncated close to the star, leaving little material available for planet formation. In this paper, we attempt to model a protoplanetary disk around HD 188753A using a fairly simple alpha-disk model, exploring a range of parameters constrained by observations of T Tauri-type stars. The disk is truncated to within 1.5 to 2.7 AU, depending on model parameters. We find that the in situ formation of the planet around HD 188753A is implausible.Comment: Accepted version, to appear in ApJ. 23 pages, 5 figures (3 in color

    Theory of wind accretion

    Full text link
    A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about 4×10364\times10^{36} erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.Comment: LaTeX, 10 pages, 5 figures; submitted to Proc. of Int. Conf. "Physics at the Magnetspheric Boundary", Geneva, Switzerland, 25-28 June, 201

    A Disk--Jet interaction model for the X--Ray Variability in Microquasars

    Get PDF
    We propose a simple dynamical model that may account for the observed spectral and temporal properties of GRS 1915+105 and XTE J1550-5634. The model is based on the assumption that a fraction of the radiation emitted by a hot spot lying on the accreting disk is dynamically Comptonized by the relativistic jet that typically accompanies the microquasar phenomenon. We show that scattering by the jet produces a detectable modulation of the observed flux. In particular, we found that the phase lag between hard and soft photons depends on the radial position of the hot spot and, if the angle between the jet and the line of sight is sufficiently large, the lags of the fundamental and its harmonics may be either positive or negative.Comment: 14 pages, 4 figures, accepted for publication in ApJ Part

    New composite models of partially ionized protoplanetary disks

    Full text link
    We study an accretion disk in which three different regions may coexist: MHD turbulent regions, dead zones and gravitationally unstable regions. Although the dead zones are stable, there is some transport due to the Reynolds stress associated with waves emitted from the turbulent layers. We model the transport in each of the different regions by its own α\alpha parameter, this being 10 to 10310^{3} times smaller in dead zones than in active layers. In gravitationally unstable regions, α\alpha is determined by the fact that the disk self-adjusts to a state of marginal stability. We construct steady-state models of such disks. We find that for uniform mass flow, the disk has to be more massive, hotter and thicker at the radii where there is a dead zone. In disks in which the dead zone is very massive, gravitational instabilities are present. Whether such models are realistic or not depends on whether hydrodynamical fluctuations driven by the turbulent layers can penetrate all the way inside the dead zone. This may be more easily achieved when the ratio of the mass of the active layer to that of the dead zone is relatively large, which in our models corresponds to α\alpha in the dead zone being about 10% of α\alpha in the active layers. If the disk is at some stage of its evolution not in steady-state, then the surface density will evolve toward the steady-state solution. However, if α\alpha in the dead zone is much smaller than in the active zone, the timescale for the parts of the disk beyond a few AU to reach steady-state may become longer than the disk lifetime. Steady-state disks with dead zones are a more favorable environment for planet formation than standard disks, since the dead zone is typically 10 times more massive than a corresponding turbulent zone at the same location.Comment: 13 pages, 5 figures, accepted for publication in Ap
    • 

    corecore