1,515 research outputs found

    Long-term Nonlinear Behaviour of the Magnetorotational Instability in a Localised Model of an Accretion Disc

    Get PDF
    For more than a decade, the so-called shearing box model has been used to study the fundamental local dynamics of accretion discs. This approach has proved to be very useful because it allows high resolution and long term studies to be carried out, studies that would not be possible for a global disc. Localised disc studies have largely focused on examining the rate of enhanced transport of angular momentum, essentially a sum of the Reynolds and Maxwell stresses. The dominant radial-azimuthal component of this stress tensor is, in the classic Shakura-Sunayaev model, expressed as a constant alpha times the pressure. Previous studies have estimated alpha based on a modest number of orbital times. Here we use much longer baselines, and perform a cumulative average for alpha. Great care must be exercised when trying to extract numerical alpha values from simulations: dissipation scales, computational box aspect ratio, and even numerical algorithms all affect the result. This study suggests that estimating alpha becomes more, not less, difficult as computational power increases.Comment: 10 pages, 10 figures, 2 tables, accepted by MNRA

    A New Equilibrium for Accretion Disks Around Black Holes

    Full text link
    Accretion disks around black holes in which the shear stress is proportional to the total pressure, the accretion rate is more than a small fraction of Eddington, and the matter is distributed smoothly are both thermally and viscously unstable in their inner portions. The nonlinear endstate of these instabilities is uncertain. Here a new inhomogeneous equilibrium is proposed which is both thermally and viscously stable. In this equilibrium the majority of the mass is in dense clumps, while a minority reaches temperatures ∌109\sim 10^9 K. The requirements of dynamical and thermal equilibrium completely determine the parameters of this system, and these are found to be in good agreement with the parameters derived from observations of accreting black holes, both in active galactic nuclei and in stellar binary systems.Comment: AAS LaTeX, accepted to Ap. J. Letter

    Further Criteria for the Existence of Steady Line-Driven Winds

    Full text link
    In Paper I, we showed that steady line-driven disk wind solutions can exist by using "simple" models that mimic the disk environment. Here I extend the concepts introduced in Paper I and discuss many details of the analysis of the steady/unsteady nature of 1D line-driven winds. This work confirms the results and conclusions of Paper I, and is thus consistent with the steady nature of the 1D streamline line-driven disk wind models of Murray and collaborators and the 2.5D line-driven disk wind models of Pereyra and collaborators. When including gas pressures effects, as is routinely done in time-dependent numerical models, I find that the spatial dependence of the nozzle function continues to play a key role in determining the steady/unsteady nature of supersonic line-driven wind solutions. I show here that the existence/nonexistence of local wind solutions can be proved through the nozzle function without integrating the equation of motion. This work sets a detailed framework with which we will analyze, in a following paper, more realistic models than the "simple" models of Paper I.Comment: 30 pages, 5 figures, accepted for publication by The Astrophysical Journa

    Two-dimensional radiation-hydrodynamic model for limit-cycle oscillations of luminous accretion disks

    Full text link
    We investigate the time evolution of luminous accretion disks around black holes, conducting the two-dimensional radiation-hydrodynamic simulations. We adopt the alpha prescription for the viscosity. The radial-azimuthal component of viscous stress tensor is assumed to be proportional to the total pressure in the optically thick region, while the gas pressure in the optically thin regime. The viscosity parameter, alpha, is taken to be 0.1. We find the limit-cycle variation in luminosity between high and low states. When we set the mass input rate from the outer disk boundary to be 100 L_E/c^2, the luminosity suddenly rises from 0.3L_E to 2L_E, where L_E is the Eddington luminosity. It decays after retaining high value for about 40 s. Our numerical results can explain the variation amplitude and duration of the recurrent outbursts observed in microquasar, GRS 1915+105. We show that the multi-dimensional effects play an important role in the high-luminosity state. In this state, the outflow is driven by the strong radiation force, and some part of radiation energy dissipated inside the disk is swallowed by the black hole due to the photon-trapping effects. This trapped luminosity is comparable to the disk luminosity. We also calculate two more cases: one with a much larger accretion rate than the critical value for the instability and the other with the viscous stress tensor being proportional to the gas pressure only even when the radiation pressure is dominant. We find no quasi-periodic light variations in these cases. This confirms that the limit-cycle behavior found in the simulations is caused by the disk instability.Comment: 6 pages, 4 figures, accepted for publication in ApJ (ApJ 01 April 2006, v640, 2 issue

    Two-Dimensional Hydrodynamic Simulations of Convection in Radiation-Dominated Accretion Disks

    Get PDF
    The standard equilibrium for radiation-dominated accretion disks has long been known to be viscously, thermally, and convectively unstable, but the nonlinear development of these instabilities---hence the actual state of such disks---has not yet been identified. By performing local two-dimensional hydrodynamic simulations of disks, we demonstrate that convective motions can release heat sufficiently rapidly as to substantially alter the vertical structure of the disk. If the dissipation rate within a vertical column is proportional to its mass, the disk settles into a new configuration thinner by a factor of two than the standard radiation-supported equilibrium. If, on the other hand, the vertically-integrated dissipation rate is proportional to the vertically-integrated total pressure, the disk is subject to the well-known thermal instability. Convection, however, biases the development of this instability toward collapse. The end result of such a collapse is a gas pressure-dominated equilibrium at the original column density.Comment: 10 pages, 7 figures, accepted for publication in ApJ. Please send comments to [email protected]

    The Formation and Role of Vortices in Protoplanetary Disks

    Get PDF
    We carry out a two-dimensional, compressible, simulation of a disk, including dust particles, to study the formation and role of vortices in protoplanetary disks. We find that anticyclonic vortices can form out of an initial random perturbation of the vorticity field. Vortices have a typical decay time of the order of 50 orbital periods (for a viscosity parameter alpha=0.0001 and a disk aspect ratio of H/r = 0.15). If vorticity is continuously generated at a constant rate in the flow (e.g. by convection), then a large vortex can form and be sustained (due to the merger of vortices). We find that dust concentrates in the cores of vortices within a few orbital periods, when the drag parameter is of the order of the orbital frequency. Also, the radial drift of the dust induces a significant increase in the surface density of dust particles in the inner region of the disk. Thus, vortices may represent the preferred location for planetesimal formation in protoplanetary disks. We show that it is very difficult for vortex mergers to sustain a relatively coherent outward flux of angular momentum.Comment: Sumitted to the Astrophysical Journal, October 20, 199

    New composite models of partially ionized protoplanetary disks

    Full text link
    We study an accretion disk in which three different regions may coexist: MHD turbulent regions, dead zones and gravitationally unstable regions. Although the dead zones are stable, there is some transport due to the Reynolds stress associated with waves emitted from the turbulent layers. We model the transport in each of the different regions by its own α\alpha parameter, this being 10 to 10310^{3} times smaller in dead zones than in active layers. In gravitationally unstable regions, α\alpha is determined by the fact that the disk self-adjusts to a state of marginal stability. We construct steady-state models of such disks. We find that for uniform mass flow, the disk has to be more massive, hotter and thicker at the radii where there is a dead zone. In disks in which the dead zone is very massive, gravitational instabilities are present. Whether such models are realistic or not depends on whether hydrodynamical fluctuations driven by the turbulent layers can penetrate all the way inside the dead zone. This may be more easily achieved when the ratio of the mass of the active layer to that of the dead zone is relatively large, which in our models corresponds to α\alpha in the dead zone being about 10% of α\alpha in the active layers. If the disk is at some stage of its evolution not in steady-state, then the surface density will evolve toward the steady-state solution. However, if α\alpha in the dead zone is much smaller than in the active zone, the timescale for the parts of the disk beyond a few AU to reach steady-state may become longer than the disk lifetime. Steady-state disks with dead zones are a more favorable environment for planet formation than standard disks, since the dead zone is typically 10 times more massive than a corresponding turbulent zone at the same location.Comment: 13 pages, 5 figures, accepted for publication in Ap

    A Disk--Jet interaction model for the X--Ray Variability in Microquasars

    Get PDF
    We propose a simple dynamical model that may account for the observed spectral and temporal properties of GRS 1915+105 and XTE J1550-5634. The model is based on the assumption that a fraction of the radiation emitted by a hot spot lying on the accreting disk is dynamically Comptonized by the relativistic jet that typically accompanies the microquasar phenomenon. We show that scattering by the jet produces a detectable modulation of the observed flux. In particular, we found that the phase lag between hard and soft photons depends on the radial position of the hot spot and, if the angle between the jet and the line of sight is sufficiently large, the lags of the fundamental and its harmonics may be either positive or negative.Comment: 14 pages, 4 figures, accepted for publication in ApJ Part

    Linear Two-Dimensional MHD of Accretion Disks: Crystalline structure and Nernst coefficient

    Full text link
    We analyse the two-dimensional MHD configurations characterising the steady state of the accretion disk on a highly magnetised neutron star. The model we describe has a local character and represents the extension of the crystalline structure outlined in Coppi (2005), dealing with a local model too, when a specific accretion rate is taken into account. We limit our attention to the linearised MHD formulation of the electromagnetic back-reaction characterising the equilibrium, by fixing the structure of the radial, vertical and azimuthal profiles. Since we deal with toroidal currents only, the consistency of the model is ensured by the presence of a small collisional effect, phenomenologically described by a non-zero constant Nernst coefficient (thermal power of the plasma). Such an effect provides a proper balance of the electron force equation via non zero temperature gradients, related directly to the radial and vertical velocity components. We show that the obtained profile has the typical oscillating feature of the crystalline structure, reconciled with the presence of viscosity, associated to the differential rotation of the disk, and with a net accretion rate. In fact, we provide a direct relation between the electromagnetic reaction of the disk and the (no longer zero) increasing of its mass per unit time. The radial accretion component of the velocity results to be few orders of magnitude below the equatorial sound velocity. Its oscillating-like character does not allow a real matter in-fall to the central object (an effect to be searched into non-linear MHD corrections), but it accounts for the out-coming of steady fluxes, favourable to the ring-like morphology of the disk.Comment: 15 pages, 1 figure, accepted for publication on Modern Physics Letters

    On the Vertical Structure of Radiation-Dominated Accretion Disks

    Full text link
    The vertical structure of black hole accretion disks in which radiation dominates the total pressure is investigated using a three-dimensional radiation-MHD calculation. The domain is a small patch of disk centered 100 Schwarzschild radii from a black hole of 10^8 Solar masses, and the stratified shearing-box approximation is used. Magneto-rotational instability converts gravitational energy to turbulent magnetic and kinetic energy. The gas is heated by magnetic dissipation and by radiation damping of the turbulence, and cooled by diffusion and advection of radiation through the vertical boundaries. The resulting structure differs in several fundamental ways from the standard Shakura-Sunyaev picture. The disk consists of three layers. At the midplane, the density is large, and the magnetic pressure and total accretion stress are less than the gas pressure. In lower-density surface layers that are optically thick, the magnetic pressure and stress are greater than the gas pressure but less than the radiation pressure. Horizontal density variations in the surface layers exceed an order of magnitude. Magnetic fields in the regions of greatest stress are buoyant, and dissipate as they rise, so the heating rate declines more slowly with height than the stress. Much of the dissipation occurs at low column depth, and the interior is cooler and less radiation-dominated than in the Shakura-Sunyaev model with the same surface mass density and flux. The mean structure is convectively stable.Comment: 3 figures. Accepted by Astrophysical Journal Letter
    • 

    corecore