1,515 research outputs found
Long-term Nonlinear Behaviour of the Magnetorotational Instability in a Localised Model of an Accretion Disc
For more than a decade, the so-called shearing box model has been used to
study the fundamental local dynamics of accretion discs. This approach has
proved to be very useful because it allows high resolution and long term
studies to be carried out, studies that would not be possible for a global
disc.
Localised disc studies have largely focused on examining the rate of enhanced
transport of angular momentum, essentially a sum of the Reynolds and Maxwell
stresses. The dominant radial-azimuthal component of this stress tensor is, in
the classic Shakura-Sunayaev model, expressed as a constant alpha times the
pressure. Previous studies have estimated alpha based on a modest number of
orbital times. Here we use much longer baselines, and perform a cumulative
average for alpha. Great care must be exercised when trying to extract
numerical alpha values from simulations: dissipation scales, computational box
aspect ratio, and even numerical algorithms all affect the result. This study
suggests that estimating alpha becomes more, not less, difficult as
computational power increases.Comment: 10 pages, 10 figures, 2 tables, accepted by MNRA
A New Equilibrium for Accretion Disks Around Black Holes
Accretion disks around black holes in which the shear stress is proportional
to the total pressure, the accretion rate is more than a small fraction of
Eddington, and the matter is distributed smoothly are both thermally and
viscously unstable in their inner portions. The nonlinear endstate of these
instabilities is uncertain. Here a new inhomogeneous equilibrium is proposed
which is both thermally and viscously stable. In this equilibrium the majority
of the mass is in dense clumps, while a minority reaches temperatures K. The requirements of dynamical and thermal equilibrium completely
determine the parameters of this system, and these are found to be in good
agreement with the parameters derived from observations of accreting black
holes, both in active galactic nuclei and in stellar binary systems.Comment: AAS LaTeX, accepted to Ap. J. Letter
Further Criteria for the Existence of Steady Line-Driven Winds
In Paper I, we showed that steady line-driven disk wind solutions can exist
by using "simple" models that mimic the disk environment. Here I extend the
concepts introduced in Paper I and discuss many details of the analysis of the
steady/unsteady nature of 1D line-driven winds. This work confirms the results
and conclusions of Paper I, and is thus consistent with the steady nature of
the 1D streamline line-driven disk wind models of Murray and collaborators and
the 2.5D line-driven disk wind models of Pereyra and collaborators. When
including gas pressures effects, as is routinely done in time-dependent
numerical models, I find that the spatial dependence of the nozzle function
continues to play a key role in determining the steady/unsteady nature of
supersonic line-driven wind solutions. I show here that the
existence/nonexistence of local wind solutions can be proved through the nozzle
function without integrating the equation of motion. This work sets a detailed
framework with which we will analyze, in a following paper, more realistic
models than the "simple" models of Paper I.Comment: 30 pages, 5 figures, accepted for publication by The Astrophysical
Journa
Two-dimensional radiation-hydrodynamic model for limit-cycle oscillations of luminous accretion disks
We investigate the time evolution of luminous accretion disks around black
holes, conducting the two-dimensional radiation-hydrodynamic simulations. We
adopt the alpha prescription for the viscosity. The radial-azimuthal component
of viscous stress tensor is assumed to be proportional to the total pressure in
the optically thick region, while the gas pressure in the optically thin
regime. The viscosity parameter, alpha, is taken to be 0.1. We find the
limit-cycle variation in luminosity between high and low states. When we set
the mass input rate from the outer disk boundary to be 100 L_E/c^2, the
luminosity suddenly rises from 0.3L_E to 2L_E, where L_E is the Eddington
luminosity. It decays after retaining high value for about 40 s. Our numerical
results can explain the variation amplitude and duration of the recurrent
outbursts observed in microquasar, GRS 1915+105. We show that the
multi-dimensional effects play an important role in the high-luminosity state.
In this state, the outflow is driven by the strong radiation force, and some
part of radiation energy dissipated inside the disk is swallowed by the black
hole due to the photon-trapping effects. This trapped luminosity is comparable
to the disk luminosity. We also calculate two more cases: one with a much
larger accretion rate than the critical value for the instability and the other
with the viscous stress tensor being proportional to the gas pressure only even
when the radiation pressure is dominant. We find no quasi-periodic light
variations in these cases. This confirms that the limit-cycle behavior found in
the simulations is caused by the disk instability.Comment: 6 pages, 4 figures, accepted for publication in ApJ (ApJ 01 April
2006, v640, 2 issue
Two-Dimensional Hydrodynamic Simulations of Convection in Radiation-Dominated Accretion Disks
The standard equilibrium for radiation-dominated accretion disks has long
been known to be viscously, thermally, and convectively unstable, but the
nonlinear development of these instabilities---hence the actual state of such
disks---has not yet been identified. By performing local two-dimensional
hydrodynamic simulations of disks, we demonstrate that convective motions can
release heat sufficiently rapidly as to substantially alter the vertical
structure of the disk. If the dissipation rate within a vertical column is
proportional to its mass, the disk settles into a new configuration thinner by
a factor of two than the standard radiation-supported equilibrium. If, on the
other hand, the vertically-integrated dissipation rate is proportional to the
vertically-integrated total pressure, the disk is subject to the well-known
thermal instability. Convection, however, biases the development of this
instability toward collapse. The end result of such a collapse is a gas
pressure-dominated equilibrium at the original column density.Comment: 10 pages, 7 figures, accepted for publication in ApJ. Please send
comments to [email protected]
The Formation and Role of Vortices in Protoplanetary Disks
We carry out a two-dimensional, compressible, simulation of a disk, including
dust particles, to study the formation and role of vortices in protoplanetary
disks. We find that anticyclonic vortices can form out of an initial random
perturbation of the vorticity field. Vortices have a typical decay time of the
order of 50 orbital periods (for a viscosity parameter alpha=0.0001 and a disk
aspect ratio of H/r = 0.15). If vorticity is continuously generated at a
constant rate in the flow (e.g. by convection), then a large vortex can form
and be sustained (due to the merger of vortices).
We find that dust concentrates in the cores of vortices within a few orbital
periods, when the drag parameter is of the order of the orbital frequency.
Also, the radial drift of the dust induces a significant increase in the
surface density of dust particles in the inner region of the disk. Thus,
vortices may represent the preferred location for planetesimal formation in
protoplanetary disks.
We show that it is very difficult for vortex mergers to sustain a relatively
coherent outward flux of angular momentum.Comment: Sumitted to the Astrophysical Journal, October 20, 199
New composite models of partially ionized protoplanetary disks
We study an accretion disk in which three different regions may coexist: MHD
turbulent regions, dead zones and gravitationally unstable regions. Although
the dead zones are stable, there is some transport due to the Reynolds stress
associated with waves emitted from the turbulent layers. We model the transport
in each of the different regions by its own parameter, this being 10
to times smaller in dead zones than in active layers. In
gravitationally unstable regions, is determined by the fact that the
disk self-adjusts to a state of marginal stability. We construct steady-state
models of such disks. We find that for uniform mass flow, the disk has to be
more massive, hotter and thicker at the radii where there is a dead zone. In
disks in which the dead zone is very massive, gravitational instabilities are
present. Whether such models are realistic or not depends on whether
hydrodynamical fluctuations driven by the turbulent layers can penetrate all
the way inside the dead zone. This may be more easily achieved when the ratio
of the mass of the active layer to that of the dead zone is relatively large,
which in our models corresponds to in the dead zone being about 10% of
in the active layers. If the disk is at some stage of its evolution
not in steady-state, then the surface density will evolve toward the
steady-state solution. However, if in the dead zone is much smaller
than in the active zone, the timescale for the parts of the disk beyond a few
AU to reach steady-state may become longer than the disk lifetime. Steady-state
disks with dead zones are a more favorable environment for planet formation
than standard disks, since the dead zone is typically 10 times more massive
than a corresponding turbulent zone at the same location.Comment: 13 pages, 5 figures, accepted for publication in Ap
A Disk--Jet interaction model for the X--Ray Variability in Microquasars
We propose a simple dynamical model that may account for the observed
spectral and temporal properties of GRS 1915+105 and XTE J1550-5634. The model
is based on the assumption that a fraction of the radiation emitted by a hot
spot lying on the accreting disk is dynamically Comptonized by the relativistic
jet that typically accompanies the microquasar phenomenon. We show that
scattering by the jet produces a detectable modulation of the observed flux. In
particular, we found that the phase lag between hard and soft photons depends
on the radial position of the hot spot and, if the angle between the jet and
the line of sight is sufficiently large, the lags of the fundamental and its
harmonics may be either positive or negative.Comment: 14 pages, 4 figures, accepted for publication in ApJ Part
Linear Two-Dimensional MHD of Accretion Disks: Crystalline structure and Nernst coefficient
We analyse the two-dimensional MHD configurations characterising the steady
state of the accretion disk on a highly magnetised neutron star. The model we
describe has a local character and represents the extension of the crystalline
structure outlined in Coppi (2005), dealing with a local model too, when a
specific accretion rate is taken into account. We limit our attention to the
linearised MHD formulation of the electromagnetic back-reaction characterising
the equilibrium, by fixing the structure of the radial, vertical and azimuthal
profiles. Since we deal with toroidal currents only, the consistency of the
model is ensured by the presence of a small collisional effect,
phenomenologically described by a non-zero constant Nernst coefficient (thermal
power of the plasma). Such an effect provides a proper balance of the electron
force equation via non zero temperature gradients, related directly to the
radial and vertical velocity components.
We show that the obtained profile has the typical oscillating feature of the
crystalline structure, reconciled with the presence of viscosity, associated to
the differential rotation of the disk, and with a net accretion rate. In fact,
we provide a direct relation between the electromagnetic reaction of the disk
and the (no longer zero) increasing of its mass per unit time. The radial
accretion component of the velocity results to be few orders of magnitude below
the equatorial sound velocity. Its oscillating-like character does not allow a
real matter in-fall to the central object (an effect to be searched into
non-linear MHD corrections), but it accounts for the out-coming of steady
fluxes, favourable to the ring-like morphology of the disk.Comment: 15 pages, 1 figure, accepted for publication on Modern Physics
Letters
On the Vertical Structure of Radiation-Dominated Accretion Disks
The vertical structure of black hole accretion disks in which radiation
dominates the total pressure is investigated using a three-dimensional
radiation-MHD calculation. The domain is a small patch of disk centered 100
Schwarzschild radii from a black hole of 10^8 Solar masses, and the stratified
shearing-box approximation is used. Magneto-rotational instability converts
gravitational energy to turbulent magnetic and kinetic energy. The gas is
heated by magnetic dissipation and by radiation damping of the turbulence, and
cooled by diffusion and advection of radiation through the vertical boundaries.
The resulting structure differs in several fundamental ways from the standard
Shakura-Sunyaev picture. The disk consists of three layers. At the midplane,
the density is large, and the magnetic pressure and total accretion stress are
less than the gas pressure. In lower-density surface layers that are optically
thick, the magnetic pressure and stress are greater than the gas pressure but
less than the radiation pressure. Horizontal density variations in the surface
layers exceed an order of magnitude. Magnetic fields in the regions of greatest
stress are buoyant, and dissipate as they rise, so the heating rate declines
more slowly with height than the stress. Much of the dissipation occurs at low
column depth, and the interior is cooler and less radiation-dominated than in
the Shakura-Sunyaev model with the same surface mass density and flux. The mean
structure is convectively stable.Comment: 3 figures. Accepted by Astrophysical Journal Letter
- âŠ