32 research outputs found
Finding the Missing Heritability: Gene Mapping Strategies for Complex Pedigrees.
Geneticists have been working for decades to identify genetic factors that underlie variation in complex traits. Yet much of the variance attributed to additive genetic factors remains unaccounted for, the so-called âmissing heritability problem.â Factors that may account for some of the missing heritability include the following: rare variants, structural variants, gene-gene interactions, and gene-environment interactions. In this dissertation, I evaluate the contribution of rare variants and gene-gene interactions to the missing heritability problem. Specifically, I develop and evaluate research strategies that take advantage of complex pedigree information. I apply these strategies to quantitative traits in the Old Order Amish, a population isolate in which most individuals are related through a single, complex pedigree.
In Chapter 2, I describe a new statistical test to identify quantitative traits that are likely influenced by rare variants of large effect. I found evidence for the presence of rare variants influencing a few traits, including (remarkably) one for which a null mutation was previously identified. In Chapter 3, I evaluate the performance of Markov-chain Monte Carlo (MCMC) algorithms for linkage analysis of quantitative traits with complex pedigrees and dense genetic maps. I discovered that current algorithms fail to converge, resulting in highly variable LOD (logarithm of the odds) scores between MCMC runs. Despite this variability, I found consistent evidence of linkage for one trait for which a locus of large effect was previously mapped. Together, results from chapters 2 and 3 imply that rare variants of large effect are unlikely to explain much of the missing heritability of these traits.
In Chapter 4, I consider that heritability might be overestimated rather than missing. To explore this possibility, I evaluate a new regression-based method to estimate heritability that is not inflated by gene-gene interactions. As suggested by Zuk et al. (2012), this method is ideal for use in population isolates but has not been investigated in realistic data settings. Unexpectedly, I discovered that the method produces biased estimates of the narrow-sense heritability, even for purely polygenic traits. Thus, caution should be exercised before using this method and attributing the missing heritability to gene-gene interactions.PhDHuman GeneticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99917/1/kaanan_1.pd
A Gene-Based Association Method for Mapping Traits Using Reference Transcriptome Data
Genome-wide association studies (GWAS) have identified thousands of variants robustly associated with complex traits. However, the biological mechanisms underlying these associations are, in general, not well understood. We propose a gene-based association method called PrediXcan that directly tests the molecular mechanisms through which genetic variation affects phenotype. The approach estimates the component of gene expression determined by an individualâs genetic profile and correlates âimputedâ gene expression with the phenotype under investigation to identify genes involved in the etiology of the phenotype. Genetically regulated gene expression is estimated using whole-genome tissue-dependent prediction models trained with reference transcriptome data sets. PrediXcan enjoys the benefits of gene-based approaches such as reduced multiple-testing burden and a principled approach to the design of follow-up experiments. Our results demonstrate that PrediXcan can detect known and new genes associated with disease traits and provide insights into the mechanism of these associations
Multiethnic Genome-Wide Association Study of Diabetic Retinopathy Using Liability Threshold Modeling of Duration of Diabetes and Glycemic Control
Correction: Volume69, Issue6 Page1306-1306 DOI10.2337/db20-er06a Published JUN 2020To identify genetic variants associated with diabetic retinopathy (DR), we performed a large multiethnic genome-wide association study. Discovery included eight European cohorts (n = 3,246) and seven African American cohorts (n = 2,611). We meta-analyzed across cohorts using inverse-variance weighting, with and without liability threshold modeling of glycemic control and duration of diabetes. Variants with a P valuePeer reviewe
Novel Associations between Common Breast Cancer Susceptibility Variants and Risk-Predicting Mammographic Density Measures.
Mammographic density measures adjusted for age and body mass index (BMI) are heritable predictors of breast cancer risk, but few mammographic density-associated genetic variants have been identified. Using data for 10,727 women from two international consortia, we estimated associations between 77 common breast cancer susceptibility variants and absolute dense area, percent dense area and absolute nondense area adjusted for study, age, and BMI using mixed linear modeling. We found strong support for established associations between rs10995190 (in the region of ZNF365), rs2046210 (ESR1), and rs3817198 (LSP1) and adjusted absolute and percent dense areas (all P < 10(-5)). Of 41 recently discovered breast cancer susceptibility variants, associations were found between rs1432679 (EBF1), rs17817449 (MIR1972-2: FTO), rs12710696 (2p24.1), and rs3757318 (ESR1) and adjusted absolute and percent dense areas, respectively. There were associations between rs6001930 (MKL1) and both adjusted absolute dense and nondense areas, and between rs17356907 (NTN4) and adjusted absolute nondense area. Trends in all but two associations were consistent with those for breast cancer risk. Results suggested that 18% of breast cancer susceptibility variants were associated with at least one mammographic density measure. Genetic variants at multiple loci were associated with both breast cancer risk and the mammographic density measures. Further understanding of the underlying mechanisms at these loci could help identify etiologic pathways implicated in how mammographic density predicts breast cancer risk.ABCFS: The Australian Breast Cancer Family Registry (ABCFR; 1992-1995) was supported by
the Australian NHMRC, the New South Wales Cancer Council, and the Victorian Health
Promotion Foundation (Australia), and by grant UM1CA164920 from the USA National
Cancer Institute. The Genetic Epidemiology Laboratory at the University of Melbourne has
also received generous support from Mr B. Hovey and Dr and Mrs R.W. Brown to whom we
are most grateful. The content of this manuscript does not necessarily reflect the views or
policies of the National Cancer Institute or any of the collaborating centers in the Breast
Breast Cancer Susceptibility Variants and Mammographic Density
5
Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or
organizations imply endorsement by the USA Government or the BCFR.
BBCC: This study was funded in part by the ELAN-Program of the University Hospital
Erlangen; Katharina Heusinger was funded by the ELAN program of the University Hospital
Erlangen. BBCC was supported in part by the ELAN program of the Medical Faculty,
University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg.
EPIC-Norfolk: This study was funded by research programme grant funding from Cancer
Research UK and the Medical Research Council with additional support from the Stroke
Association, British Heart Foundation, Department of Health, Research into Ageing and
Academy of Medical Sciences.
MCBCS: This study was supported by Public Health Service Grants P50 CA 116201, R01 CA
128931, R01 CA 128931-S01, R01 CA 122340, CCSG P30 CA15083, from the National Cancer
Institute, National Institutes of Health, and Department of Health and Human Services.
MCCS: Melissa C. Southey is a National Health and Medical Research Council Senior
Research Fellow and a Victorian Breast Cancer Research Consortium Group Leader. The
study was supported by the Cancer Council of Victoria and by the Victorian Breast Cancer
Research Consortium.
MEC: National Cancer Institute: R37CA054281, R01CA063464, R01CA085265, R25CA090956,
R01CA132839.
MMHS: This work was supported by grants from the National Cancer Institute, National
Institutes of Health, and Department of Health and Human Services. (R01 CA128931, R01 CA
128931-S01, R01 CA97396, P50 CA116201, and Cancer Center Support Grant P30 CA15083).
Breast Cancer Susceptibility Variants and Mammographic Density
6
NBCS: This study has been supported with grants from Norwegian Research Council
(#183621/S10 and #175240/S10), The Norwegian Cancer Society (PK80108002,
PK60287003), and The Radium Hospital Foundation as well as S-02036 from South Eastern
Norway Regional Health Authority.
NHS: This study was supported by Public Health Service Grants CA131332, CA087969,
CA089393, CA049449, CA98233, CA128931, CA 116201, CA 122340 from the National
Cancer Institute, National Institutes of Health, Department of Health and Human Services.
OOA study was supported by CA122822 and X01 HG005954 from the NIH; Breast Cancer
Research Fund; Elizabeth C. Crosby Research Award, Gladys E. Davis Endowed Fund, and the
Office of the Vice President for Research at the University of Michigan. Genotyping services
for the OOA study were provided by the Center for Inherited Disease Research (CIDR), which
is fully funded through a federal contract from the National Institutes of Health to The Johns
Hopkins University, contract number HHSN268200782096.
OFBCR: This work was supported by grant UM1 CA164920 from the USA National Cancer
Institute. The content of this manuscript does not necessarily reflect the views or policies of
the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family
Registry (BCFR), nor does mention of trade names, commercial products, or organizations
imply endorsement by the USA Government or the BCFR.
SASBAC: The SASBAC study was supported by MĂ€rit and Hans Rausingâs Initiative against
Breast Cancer, National Institutes of Health, Susan Komen Foundation and Agency for
Science, Technology and Research of Singapore (A*STAR).
Breast Cancer Susceptibility Variants and Mammographic Density
7
SIBS: SIBS was supported by program grant C1287/A10118 and project grants from Cancer
Research UK (grant numbers C1287/8459).
COGS grant: Collaborative Oncological Gene-environment Study (COGS) that enabled the
genotyping for this study. Funding for the BCAC component is provided by grants from the
EU FP7 programme (COGS) and from Cancer Research UK. Funding for the iCOGS
infrastructure came from: the European Community's Seventh Framework Programme
under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK
(C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384,
C5047/A15007, C5047/A10692), the National Institutes of Health (CA128978) and Post-
Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAMEON
initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of
Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen
Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer
Research Fund.This is the author accepted manuscript. The final version is available via American Association for Cancer Research at http://cancerres.aacrjournals.org/content/early/2015/04/10/0008-5472.CAN-14-2012.abstract
Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk
Mammographic density reflects the amount of stromal and epithelial tissues in relation to adipose tissue in the breast and is a strong risk factor for breast cancer. Here we report the results from meta-analysis of genome-wide association studies (GWAS) of three mammographic density phenotypes: dense area, non-dense area and percent density in up to 7,916 women in stage 1 and an additional 10,379 women in stage 2. We identify genome-wide significant (P<5Ă10â8) loci for dense area (AREG, ESR1, ZNF365, LSP1/TNNT3, IGF1, TMEM184B, SGSM3/MKL1), non-dense area (8p11.23) and percent density (PRDM6, 8p11.23, TMEM184B). Four of these regions are known breast cancer susceptibility loci, and four additional regions were found to be associated with breast cancer (P<0.05) in a large meta-analysis. These results provide further evidence of a shared genetic basis between mammographic density and breast cancer and illustrate the power of studying intermediate quantitative phenotypes to identify putative disease susceptibility loci
Power of the RVKT as a function of effect size.
<p>Effect size is the proportion of the trait variance explained by the rare variant. Results are based on 1,000 simulations of a quantitative trait and assume a rare variant allele frequency of 2%, a narrow-sense heritability of 40%, and pedigrees from (panel A) our study of mammographic density (nâ=â1,481) or (panel B) the HAPI Heart study (nâ=â868). Power is shown for trimmed Amish pedigrees (gray bars) and the complete 13-generation Amish pedigree (black bars). For comparison, power is also shown for four-person nuclear families (two parents and two offspring), with sample sizes equivalent to the sizes of our Amish studies (white bars). The significance level was set at 0.05.</p
A Method to Prioritize Quantitative Traits and Individuals for Sequencing in Family-Based Studies
<div><p></p><p>Owing to recent advances in DNA sequencing, it is now technically feasible to evaluate the contribution of rare variation to complex traits and diseases. However, it is still cost prohibitive to sequence the whole genome (or exome) of all individuals in each study. For quantitative traits, one strategy to reduce cost is to sequence individuals in the tails of the trait distribution. However, the next challenge becomes how to prioritize traits and individuals for sequencing since individuals are often characterized for dozens of medically relevant traits. In this article, we describe a new method, the Rare Variant Kinship Test (RVKT), which leverages relationship information in family-based studies to identify quantitative traits that are likely influenced by rare variants. Conditional on nuclear families and extended pedigrees, we evaluate the power of the RVKT via simulation. Not unexpectedly, the power of our method depends strongly on effect size, and to a lesser extent, on the frequency of the rare variant and the number and type of relationships in the sample. As an illustration, we also apply our method to data from two genetic studies in the Old Order Amish, a founder population with extensive genealogical records. Remarkably, we implicate the presence of a rare variant that lowers fasting triglyceride levels in the Heredity and Phenotype Intervention (HAPI) Heart study (pâ=â0.044), consistent with the presence of a previously identified null mutation in the <i>APOC3</i> gene that lowers fasting triglyceride levels in HAPI Heart study participants.</p></div
Pair-wise relationships between individuals from our study of mammographic density (nâ=â1,481) and the HAPI Heart study (nâ=â868) after pedigree trimming.
<p>Note â Pedigree trimming yielded 177 families with 1â44 study participants per family (average of 8) in our study of mammographic density and 138 families with 1â46 study participants per family (average of 6) in the HAPI Heart study.</p
RVKT p-values (p<sub>min</sub>) for 37 quantitative traits from the HAPI Heart study.
<p>Each bar represents the result for a single trait. Black bars, significant (p<sub>min</sub>â€0.05); gray bars, not significant. Dashed line denotes p-value threshold corrected for multiple testing. Traits were transformed to approximate normality, when necessary, and adjusted for age and sex. Traits are ordered such that highly correlated traits are closer together.</p