23 research outputs found
Incretion hormones as a therapeutic target in sepsis: a review
Sepsis is a complex medical illness characterized by a deleterious pro-inflammatory response to an inciting infection leading to multi-system organ dysfunction. From a public health perspective, sepsis affects over one million Americans annually with considerable in-hospital mortality, substantial associated healthcare costs, and increased physical and neurocognitive deficits in survivors of sepsis hospitalizations. Dysglycemia during sepsis hospitalization – manifesting through either hypoglycemia, hyperglycemia, or increased glycemic variability –confers increased risk of organ dysfunction and death. Novel targets for the treatment of sepsis and maintenance of glucose homeostasis are needed.
The incretin hormone axis has emerged recently as a therapeutic target in the management of diabetes mellitus. The intestine-derived incretin hormones glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted by enteroendocrine cells in response to enteral nutrients and potentiate insulin release from pancreatic beta cells in a glucose-dependent manner. Incretin hormones have additional pleiotropic effects on improving insulin sensitivity and reducing systemic inflammation. Medications targeting increased incretin activity are effective in improving glycemic control in diabetic patients and reducing cardiovascular risk.
Manipulation of incretin hormones may provide a means of attenuating the pro-inflammatory response and promoting euglycemia in sepsis. Incretin-based therapies demonstrate the potential to decrease immune cell activation and inhibit pro-inflammatory cytokine release in response to inflammatory stimuli. Targeting increased incretin activity reduces organ dysfunction and improves survival in preclinical septic models. However, clinical trials of increased incretin activity during acute hospitalizations are limited. Several small clinical trials suggest benefits in glycemic control with the use of exogenous GLP-1 infusion, but these studies were performed in mixed-populations of critically-ill patients and studies specifically in septic patients are lacking. Further clinical studies of the effects of incretin hormones specifically in septic populations are needed
Serum metabolomic signatures of fatty acid oxidation defects differentiate host-response subphenotypes of acute respiratory distress syndrome
BACKGROUND: Fatty acid oxidation (FAO) defects have been implicated in experimental models of acute lung injury and associated with poor outcomes in critical illness. In this study, we examined acylcarnitine profiles and 3-methylhistidine as markers of FAO defects and skeletal muscle catabolism, respectively, in patients with acute respiratory failure. We determined whether these metabolites were associated with host-response ARDS subphenotypes, inflammatory biomarkers, and clinical outcomes in acute respiratory failure.
METHODS: In a nested case-control cohort study, we performed targeted analysis of serum metabolites of patients intubated for airway protection (airway controls), Class 1 (hypoinflammatory), and Class 2 (hyperinflammatory) ARDS patients (N = 50 per group) during early initiation of mechanical ventilation. Relative amounts were quantified by liquid chromatography high resolution mass spectrometry using isotope-labeled standards and analyzed with plasma biomarkers and clinical data.
RESULTS: Of the acylcarnitines analyzed, octanoylcarnitine levels were twofold increased in Class 2 ARDS relative to Class 1 ARDS or airway controls (P = 0.0004 and \u3c 0.0001, respectively) and was positively associated with Class 2 by quantile g-computation analysis (P = 0.004). In addition, acetylcarnitine and 3-methylhistidine were increased in Class 2 relative to Class 1 and positively correlated with inflammatory biomarkers. In all patients within the study with acute respiratory failure, increased 3-methylhistidine was observed in non-survivors at 30 days (P = 0.0018), while octanoylcarnitine was increased in patients requiring vasopressor support but not in non-survivors (P = 0.0001 and P = 0.28, respectively).
CONCLUSIONS: This study demonstrates that increased levels of acetylcarnitine, octanoylcarnitine, and 3-methylhistidine distinguish Class 2 from Class 1 ARDS patients and airway controls. Octanoylcarnitine and 3-methylhistidine were associated with poor outcomes in patients with acute respiratory failure across the cohort independent of etiology or host-response subphenotype. These findings suggest a role for serum metabolites as biomarkers in ARDS and poor outcomes in critically ill patients early in the clinical course
No evidence of hemoglobin damage by SARS-CoV-2 infection
SARS-CoV-2 disease (COVID-19) has affected over 22 million patients worldwide as of August 2020. As the medical community seeks better understanding of the underlying pathophysiology of COVID-19, several theories have been proposed. One widely shared theory suggests that SARS-CoV-2 proteins directly interact with human hemoglobin (Hb) and facilitate removal of iron from the heme prosthetic group, leading to the loss of functional hemoglobin and accumulation of iron. Herein, we refute this theory. We compared clinical data from 21 critically ill COVID-19 patients to 21 non-COVID-19 ARDS patient controls, generating hemoglobin-oxygen dissociation curves from venous blood gases. This curve generated from the COVID-19 cohort matched the idealized oxygen-hemoglobin dissociation curve well (Pearson correlation, R2 = 0.97, P<0.0001; CV(RMSD) = 7.3%). We further analyzed hemoglobin, total bilirubin, lactate dehydrogenase, iron, ferritin, and haptoglobin levels. For all analyzed parameters, patients with COVID-19 had similar levels compared to patients with ARDS without COVID-19. These results indicate that patients with COVID-19 do not exhibit any hemolytic anemia or a shift in the normal hemoglobin-oxygen dissociation curve. We therefore conclude that COVID-19 does not impact oxygen delivery through a mechanism involving red cell hemolysis and subsequent removal of iron from the heme prosthetic group in hemoglobin
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
A phenotype of increased sleepiness in a mouse model of pulmonary hypertension and right ventricular hypertrophy.
The relationship between cardiovascular disease and abnormalities in sleep architecture is complex and bi-directional. Sleep disordered breathing (SDB) often confounds human studies examining sleep in the setting of heart failure, and the independent impact of isolated right or left heart failure on sleep is difficult to assess. We utilized an animal model of right heart failure using pulmonary artery banding (PAB) in mice to examine the causal effect of right heart failure on sleep architecture. Four weeks after PAB or sham (control) surgery, sleep was measured by polysomnography for 48 hours and right ventricular (RV) hypertrophy confirmed prior to sacrifice. PAB resulted in right ventricular hypertrophy based on a 30% increase in the Fulton Index (p < 0.01). After PAB, mice spent significantly more time in NREM sleep compared to the control group over a 24 hour period (53.5 ± 1.5% vs. 46.6 ± 1.4%; p < 0.01) and exhibited an inability to both cycle into REM sleep and decrease delta density across the light/sleep period. Our results support a phenotype of impaired sleep cycling and increased 'sleepiness' in a mouse model of RV dysfunction
Physiologic Effects of Exogenous Dextrose in Murine Klebsiella pneumoniae Sepsis Vary by Route of Provision
Sepsis is characterized by a dysregulated immune response to infection. Nutrition is important in the care of septic patients, but the effects of specific nutrients on inflammation in sepsis are not well defined. Our prior work has shown benefits from early enteral dextrose infusion in a preclinical endotoxemia model of sepsis. In the current study, we extend our initial work to examine the effects of dextrose infusions, varying by route of administration, on inflammation and glycemic control in a more clinically relevant and translational model of Klebsiella pneumoniae (KP) bacteremia. Ten-week old C57BL6/J male mice (n = 31) underwent the implantation of indwelling vascular catheters, followed by inoculation with oropharyngeal KP. The mice were randomized 24 h after inoculation to (1) intravenous (IV) dextrose, (2) enteral dextrose, or (3) enteral saline (control) to study the effects on systemic inflammation, hemodynamics, and glycemic control. At 72 h, 77% of the control mice died, whereas IV dextrose induced 100% mortality, associated with increased inflammation, hyperglycemia, and hypotension. Enteral dextrose reduced mortality to 27%, promoted euglycemia, and reduced inflammation compared to IV dextrose. We conclude, in a bacteremic model of sepsis, that enteral (but not IV) dextrose administration is protective, suggesting that the route of nutrient support influences inflammation in sepsis
Nocturnal Hypoxia Improves Glucose Disposal, Decreases Mitochondrial Efficiency, and Increases Reactive Oxygen Species in the Muscle and Liver of C57BL/6J Mice Independent of Weight Change
Although acute exposure to hypoxia can disrupt metabolism, longer-term exposure may normalize glucose homeostasis or even improve glucose disposal in the presence of obesity. We examined the effects of two-week exposure to room air (Air), continuous 10% oxygen (C10%), and 12 hr nocturnal periods of 10% oxygen (N10%) on glucose disposal, insulin responsiveness, and mitochondrial function in lean and obese C57BL/6J mice. Both C10% and N10% improved glucose disposal relative to Air in lean and obese mice without evidence of an increase in insulin responsiveness; however, only the metabolic improvements with N10% exposure occurred in the absence of confounding effects of weight loss. In lean mice, N10% exposure caused a decreased respiratory control ratio (RCR) and increased reactive oxygen species (ROS) production in the mitochondria of the muscle and liver compared to Air-exposed mice. In the absence of hypoxia, obese mice exhibited a decreased RCR in the muscle and increased ROS production in the liver compared to lean mice; however, any additional effects of hypoxia in the presence of obesity were minimal. Our data suggest that the development of mitochondrial inefficiency may contribute to metabolic adaptions to hypoxia, independent of weight, and metabolic adaptations to adiposity, independent of hypoxia