20 research outputs found

    Large Vibrationally Induced Parity Violation Effects in CHDBrI+^+ - A Promising Candidate for Future Experiments

    Get PDF
    The isotopically chiral molecular ion CHDBrI+^+ is identified as an exceptionally promising candidate for the detection of parity violation in vibrational transitions. The largest predicted parity-violating frequency shift reaches 1.8 Hz for the hydrogen wagging mode which has a sub-Hz natural line width and its vibrational frequency auspiciously lies in the available laser range. In stark contrast to this result, the parent neutral molecule is two orders of magnitude less sensitive to parity violation. The origin of this effect is analyzed and explained. Precision vibrational spectroscopy of CHDBrI+^+ is feasible as it is amenable to preparation at internally low temperatures and resistant to predissociation, promoting long interrogation times (Landau et al.). The intersection of these properties in this molecular ion places the first observation of parity violation in chiral molecules within reach

    Chiral molecule candidates for trapped ion spectroscopy by ab-initio calculations: from state preparation to parity violation

    Get PDF
    Parity non-conservation (PNC) due to the weak interaction is predicted to give rise to enantiomer dependent vibrational constants in chiral molecules, but the phenomenon has so far eluded experimental observation. The enhanced sensitivity of molecules to physics beyond the Standard Model (BSM), has led to substantial advances in molecular precision spectroscopy, and these may be applied to PNC searches as well. Specifically, trapped molecular ion experiments leverage the universality of trapping charged particles to optimize the molecular ion species studied toward BSM searches, but in searches for PNC only a few chiral molecular ion candidates have been proposed so far. Importantly, viable candidates need to be internally cold and their internal state populations should be detectable with high quantum efficiency. To this end, we focus on molecular ions that can be created by near threshold resonant two-photon ionization and detected via state-selective photo-dissociation. Such candidates need to be stable in both charged and neutral chiral versions to be amenable to these methods. Here, we present a collection of suitable chiral molecular ion candidates we have found, including CHDBrI+^+ and CHCaBrI+^+, that fulfill these conditions according to our \textit{ab-initio} calculations. We find that organo-metallic species have a low ionization energy as neutrals and relatively high dissociation thresholds. Finally, we compute the magnitude of the PNC values for vibrational transitions for some of these candidates. An experimental demonstration of state preparation and readout for these candidates will be an important milestone toward measuring PNC in chiral molecules for the first time.Comment: 14 pages, 3 figures and supplementary informatio

    Phase protection of Fano-Feshbach resonances

    Get PDF
    Decay of bound states due to coupling with free particle states is a general phenomenon occurring at energy scales from MeV in nuclear physics to peV in ultracold atomic gases. Such a coupling gives rise to Fano-Feshbach resonances (FFR) that have become key to understanding and controlling interactions—in ultracold atomic gases, but also between quasiparticles, such as microcavity polaritons. Their energy positions were shown to follow quantum chaotic statistics. In contrast, their lifetimes have so far escaped a similarly comprehensive understanding. Here, we show that bound states, despite being resonantly coupled to a scattering state, become protected from decay whenever the relative phase is a multiple of π. We observe this phenomenon by measuring lifetimes spanning four orders of magnitude for FFR of spin–orbit excited molecular ions with merged beam and electrostatic trap experiments. Our results provide a blueprint for identifying naturally long-lived states in a decaying quantum system

    Systematic and statistical uncertainty evaluation of the HfF+^+ electron electric dipole moment experiment

    Full text link
    We have completed a new precision measurement of the electron's electric dipole moment using trapped HfF+^+ in rotating bias fields. We report on the accuracy evaluation of this measurement, describing the mechanisms behind our systematic shifts. Our systematic uncertainty is reduced by a factor of 30 compared to the first generation of this measurement. Our combined statistical and systematic accuracy is improved by a factor of 2 relative to any previous measurement

    A new bound on the electron's electric dipole moment

    Full text link
    The Standard Model cannot explain the dominance of matter over anti-matter in our universe. This imbalance indicates undiscovered physics that violates combined CP symmetry. Many extensions to the Standard Model seek to explain the imbalance by predicting the existence of new particles. Vacuum fluctuations of the fields associated with these new particles can interact with known particles and make small modifications to their properties; for example, particles which violate CP symmetry will induce an electric dipole moment of the electron (eEDM). The size of the induced eEDM is dependent on the masses of the new particles and their coupling to the Standard Model. To date, no eEDM has been detected, but increasingly precise measurements probe new physics with higher masses and weaker couplings. Here we present the most precise measurement yet of the eEDM using electrons confined inside molecular ions, subjected to a huge intra-molecular electric field, and evolving coherently for up to 3 s. Our result is consistent with zero and improves on the previous best upper bound by a factor 2.4\sim2.4. Our sensitivity to 101910^{-19} eV shifts in molecular ions provides constraints on broad classes of new physics above 101310^{13} eV, well beyond the direct reach of the LHC or any other near- or medium-term particle collider.Comment: Update to figure 2 which displays better in some pdf viewer
    corecore