11 research outputs found

    Repetitive levosimendan infusions for patients with advanced chronic heart failure in the vulnerable post-discharge period

    Get PDF
    Hospitalization for acute heart failure (HF) is associated with a substantial morbidity burden and with associated healthcare costs and an increased mortality risk. However, few if any major medical innovations have been witnessed in this area in recent times. Levosimendan is a first-in-class calcium sensitizer and potassium channel opener indicated for the management of acute HF. Experience in several clinical studies has indicated that administration of intravenous levosimendan in intermittent cycles may reduce hospitalization and mortality rates in patients with advanced HF; however, none of those trials were designed or powered to give conclusive insights into that possibility. This paper describes the rationale and protocol of LeoDOR (levosimendan infusions for patients with advanced chronic heart failure), a randomized, double-blind, placebo-controlled, international, multicentre trial that will explore the efficacy and safety of intermittent levosimendan therapy, in addition to optimized standard therapy, in patients following hospitalization for acute HF. Salient features of LeoDOR include the use of two treatment regimens, in order to evaluate the effects of different schedules and doses of levosimendan during a 12 week treatment phase, and the use of a global rank primary endpoint, in which all patients are ranked across three hierarchical groups ranging from time to death or urgent heart transplantation or implantation of a ventricular assist device to time to rehospitalization and, lastly, time-averaged proportional change in N-terminal pro-brain natriuretic peptide. Secondary endpoints include changes in HF symptoms and functional status at 14 weeks

    Prevention of autosomal dominant retinitis pigmentosa by systemic drug therapy targeting heat shock protein 90 (Hsp90)

    No full text
    Retinitis pigmentosa (RP) is the most prevalent cause of registered visual handicap among working aged populations of developed countries. Up to 40% of autosomal dominant cases of disease are caused by mutations within the rhodopsin, RDS-peripherin and inosine 5′-monophosphate dehydrogenase type 1 (IMPDH1) genes, at least 30 mutations within which give rise to proteins that cause disease pathology by misfolding and aggregation. Given the genetic complexity of this disease, therapies that simultaneously target multiple mutations are of substantial logistic and economic significance. We show here, in a murine model of autosomal dominant RP (RP10) involving expression of an Arg224Pro mutation within the IMPDH1 gene, that treatment with the low-molecular-weight drug, 17-allylamino-17-demethoxygeldanamycin (17-AAG), an ansamycin antibiotic that binds to heat shock protein Hsp90, activating a heat shock response in mammalian cells, protects photoreceptors against degeneration induced by aggregating mutant IMPDH1 protein, systemic delivery of this low-molecular-weight drug to the retina being facilitated by RNA interference-mediated modulation of the inner-blood retina barrier. 17-AAG has an orphan drug status and is in current clinical use for the treatment of non-ocular diseases. These data show that a single low-molecular-weight drug has the potential to suppress a wide range of mutant proteins causing RP

    Heat shock proteins in animal neoplasms and human tumours—a comparison

    No full text
    Heat shock proteins (HSPs) are implicated in all phases of cancer from proliferation, impaired apoptosis and sustained angiogenesis to invasion and metastasis. The presence of abnormal HSP levels in several human tumours suggests that these proteins could be used as diagnostic and/or prognostic markers, whilst the direct correlation between HSP expression and drug resistance in neoplastic tissues means they could also be used to predict cancer response to specific treatment. HSPs have also been successfully targeted in clinical trials modifying their expression or chaperone activity. Preliminary studies in veterinary medicine have also demonstrated the presence of altered HSP expression in neoplasms, and the study of carcinogenesis and the role of HSPs in animal models will surely be an additional source of information for clinical cancer research
    corecore