12 research outputs found

    Soundscapes predict species occurrence in tropical forests

    Get PDF
    Accurate occurrence data is necessary for the conservation of keystone or endangered species, but acquiring it is usually slow, laborious and costly. Automated acoustic monitoring offers a scalable alternative to manual surveys but identifying species vocalisations requires large manually annotated training datasets, and is not always possible (e.g. for lesser studied or silent species). A new approach is needed that rapidly predicts species occurrence using smaller and more coarsely labelled audio datasets. We investigated whether local soundscapes could be used to infer the presence of 32 avifaunal and seven herpetofaunal species in 20 min recordings across a tropical forest degradation gradient in Sabah, Malaysia. Using acoustic features derived from a convolutional neural network (CNN), we characterised species indicative soundscapes by training our models on a temporally coarse labelled point-count dataset. Soundscapes successfully predicted the occurrence of 34 out of the 39 species across the two taxonomic groups, with area under the curve (AUC) metrics from 0.53 up to 0.87. The highest accuracies were achieved for species with strong temporal occurrence patterns. Soundscapes were a better predictor of species occurrence than above-ground carbon density – a metric often used to quantify habitat quality across forest degradation gradients. Our results demonstrate that soundscapes can be used to efficiently predict the occurrence of a wide variety of species and provide a new direction for data driven large-scale assessments of habitat suitability

    Scalable Generation of Universal Platelets from Human Induced Pluripotent Stem Cells

    Get PDF
    Summary Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid “surge” capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness

    Thresholds for adding degraded tropical forest to the conservation estate

    Get PDF
    Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked

    Thresholds for adding degraded tropical forest to the conservation estate

    Get PDF
    Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked

    Thresholds for adding degraded tropical forest to the conservation estate

    Get PDF
    Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked

    Soundscapes predict species occurrence in tropical forests

    No full text
    Accurate occurrence data is necessary for the conservation of keystone or endangered species, but acquiring it is usually slow, laborious, and costly. Automated acoustic monitoring offers a scalable alternative to manual surveys, but identifying species vocalisations requires large manually annotated training datasets, and is not always possible (e.g., for silent species). A new, intermediate approach is needed that rapidly predicts species occurrence without requiring extensive labelled data. We investigated whether local soundscapes could be used to infer the presence of 32 avifaunal and seven herpetofaunal species across a tropical forest degradation gradient in Sabah, Malaysia. We developed a machine-learning based approach to characterise species indicative soundscapes, training our models on a coarsely labelled manual point-count dataset. Soundscapes successfully predicted the occurrence of 34 out of the 39 species across the two taxonomic groups, with area under the curve (AUC) metrics of up to 0.87 (Bold-striped Tit-babbler Macronus bornensis). The highest accuracies were achieved for common species with strong temporal occurrence patterns. Soundscapes were a better predictor of species occurrence than above-ground biomass – a metric often used to quantify habitat quality across forest degradation gradients. Synthesis and applications: Our results demonstrate that soundscapes can be used to efficiently predict the occurrence of a wide variety of species. This provides a new direction for audio data to deliver large-scale, accurate assessments of habitat suitability using cheap and easily obtained field datasets

    Avifaunal and Herpetofaunal point counts with recorded acoustic data

    No full text
    A series of 20 minute avifaunal and herpetofaunal point counts conducted throughout the SAFE landscape across a land degradation gradient. Point counts were spread evenly throughout the 24 hours of the day. Associated with each point count is an audio recording file, so (theoretically) this could be used as a training dataset for automated bioacoustic studies. Jani Sleutel was responsible for avifaunal surveys and Adi Shabrani / Nursyamin Zulkifli for herpetofaunal data. This experiment was primarily designed by Sarab Sethi and Rob Ewers as part of the WWF Biome Health project. Full acoustic data is hosted elsewhere, contact Sarab for more information.A series of 20 minute avifaunal and herpetofaunal point counts conducted throughout the SAFE landscape across a land degradation gradient. Point counts were spread evenly throughout the 24 hours of the day. Associated with each point count is an audio recording file, so (theoretically) this could be used as a training dataset for automated bioacoustic studies. Jani Sleutel was responsible for avifaunal surveys and Adi Shabrani / Nursyamin Zulkifli for herpetofaunal data. This experiment was primarily designed by Sarab Sethi and Rob Ewers as part of the WWF Biome Health project. Full acoustic data is hosted elsewhere, contact Sarab for more information.

    Thresholds for adding degraded tropical forest to the conservation estate

    No full text
    \ua9 2024. The Author(s). Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (<29% biomass removal) retain high conservation value and a largely intact functional composition, and are therefore likely to recover their pre-logging values if allowed to undergo natural regeneration. Second, the most extreme impacts occur in heavily degraded forests with more than two-thirds (>68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked
    corecore