1,127 research outputs found

    Effects of suprathermal electrons on the proton temperature anisotropy in space plasmas: Electromagnetic ion-cyclotron instability

    Full text link
    In collision-poor plasmas from space, e.g., the solar wind and planetary magnetospheres, the kinetic anisotropy of the plasma particles is expected to be regulated by the kinetic instabilities. Driven by an excess of ion (proton) temperature perpendicular to the magnetic field ( T>T)(~T_\perp >T_\parallel), the electromagnetic ion-cyclotron (EMIC) instability is fast enough to constrain the proton anisotropy, but the observations do not conform to the instability thresholds predicted by the standard theory for bi-Maxwellian models of the plasma particles. This paper presents an extended investigation of the EMIC instability in the presence of suprathermal electrons which are ubiquitous in these environments. The analysis is based on the kinetic (Vlasov-Maxwell) theory assuming that both species, protons and electrons, may be anisotropic, and the EMIC unstable solutions are derived numerically providing an accurate description for conditions typically encountered in space plasmas. The effects of suprathermal populations are triggered by the electron anisotropy and the temperature contrast between electrons and protons. For certain conditions the anisotropy thresholds exceed the limits of the proton anisotropy measured in the solar wind considerably restraining the unstable regimes of the EMIC modes.Comment: Accepted for publication in Astrophysics and space scienc

    Seven naphtho-γ-pyrones from the marine-derived fungus Alternaria alternata: structure elucidation and biological properties

    Get PDF
    Eight bioactive pyrone derivatives were identified from the culture of Alternaria alternata strain D2006, isolated from the marine soft coral Denderonephthya hemprichi, which was selected as its profound antimicrobial activities. The compounds were assigned as pyrophen (1), rubrofusarin B (2), fonsecin (3), and fonsecin B (5) beside to the four dimeric naphtho-γ-pyrones; aurasperone A (6), aurasperone B (7), aurasperone C (8), and aurasperone F (9). Structures of the isolated compounds were identified on the basis of 1D and 2D NMR spectroscopy and mass (EI, ESI, HRESI) data, and by comparison with the literature. Configuration of the four dimeric naphtho-γ-pyrones 6-9 was analyzed by CD spectra, exhibiting an identical stereochemistry

    Comparing the counter-beaming and temperature anisotropy driven aperiodic electron firehose instabilities in collisionless plasma environments

    Full text link
    The electron firehose instabilities are among the most studied kinetic instabilities, especially in the context of space plasmas, whose dynamics is mainly controlled by collisionless wave-particle interactions. This paper undertakes a comparative analysis of the aperiodic electron firehose instabilities excited either by the anisotropic temperature or by the electron counter-beaming populations. Two symmetric counter-beams provide an effective kinetic anisotropy similar to the temperature anisotropy of a single (non-drifting) population, with temperature along the magnetic field direction larger than that in perpendicular direction. Therefore, the counter-beaming plasma is susceptible to firehose-like instabilities (FIs), parallel and oblique branches. Here we focus on the oblique beaming FI, which is also aperiodic when the free energy is provided by symmetric counter-beams. Our results show that, for relative small drifts or beaming speeds (UU), not exceeding the thermal speed (α\alpha), the aperiodic FIs exist in the same interval of wave-numbers and the same range of oblique angles (with respect to the magnetic field direction), but the growth rates of counter-beaming FI (CBFI) are always higher than those of temperature anisotropy FI (TAFI). For U/α>1U/\alpha > 1, however, another electrostatic two-stream instability (ETSI) is also predicted, which may have growth rates higher than those of CBFI, and may dominate in that case the dynamics.Comment: 19 pages, 6 figures, 2 tables, accepted for publication in The Astrophysical Journa

    Like-sign dimuon charge asymmetry in Randall-Sundurm model

    Full text link
    We confirm that in order to account for the recent D\O\ result of large like-sign dimuon charge asymmetry, a considerable large new physics effect in Γ12s\Gamma_{12}^s is required in addition to a large CP violating phase in BsBˉsB_s -\bar{B}_s mixing. In the Randall-Sundrum model of warped geometry, where the fermion fields reside in the bulk, new sources of flavor and CP violation are obtained. We analyze the like-sign dimuon asymmetry in this class of model, as an example of the desired new physics. We show that the wrong charge asymmetry, aslsa_{sl}^s, which is related to the dimuon asymmetry, is significantly altered compared to the Standard Model value. However, experimental limits from ΔMs\Delta M_s, ΔΓs\Delta\Gamma_s as well as KK mixing and electroweak corrections constrain it to be greater than a σ\sigma away from its experimental average value. This model cannot fully account for the D\O\ anomaly due to its inability to generate sufficient new contribution to the width difference Γ12s\Gamma^s_{12}, even though the model can generate large contribution to the mass difference M12sM^s_{12}.Comment: 20 pages, 9 figures, discussions and references added, accepted for publication in Physical Review

    Supersymmetric Sum Rules In Minimal Superstring Unification

    Get PDF
    The Minimal superstring unification, assuming orbifold compactification, provides interesting and rather detailed implications on physics at low energy. The interesting feature of this model is that the masses of the spectrum are related since all of them are functions of only two parameters: the goldstino angle theta and the gravitino mass m_{3/2}. This fact will help us in studying the modification of the supersymmetric magnetic moments sum rules which are very sensitive to the supersymmetry breaking. We write these rules in case of exact supersymmetry in a form close to the supersymmetric mass relations, namely J(1)(2J)(2J)AJ=0 \sum_J (-1)^{(2J)} (2 J) A_J=0, where A_J is the anomalous magnetic moment of the spin J particle. We show that the anomalous magnetic moments of the W-boson and the gauginos can be written as functions of theta and m_{3/2}. Then we obtain a modified version of the supersymmetric magnetic moment sum rule in the context of the minimal superstring unification.Comment: Latex, 18 pages, 4 figure
    corecore