84 research outputs found

    Altered functional brain network connectivity and glutamate system function in transgenic mice expressing truncated Disrupted-in-Schizophrenia 1

    Get PDF
    Considerable evidence implicates DISC1 as a susceptibility gene for multiple psychiatric diseases. DISC1 has been intensively studied at the molecular, cellular and behavioral level, but its role in regulating brain connectivity and brain network function remains unknown. Here, we utilize a set of complementary approaches to assess the functional brain network abnormalities present in mice expressing a truncated Disc1 gene (Disc1tr Hemi mice). Disc1tr Hemi mice exhibited hypometabolism in the prefrontal cortex (PFC) and reticular thalamus along with a reorganization of functional brain network connectivity that included compromised hippocampal–PFC connectivity. Altered hippocampal–PFC connectivity in Disc1tr Hemi mice was confirmed by electrophysiological analysis, with Disc1tr Hemi mice showing a reduced probability of presynaptic neurotransmitter release in the monosynaptic glutamatergic hippocampal CA1–PFC projection. Glutamate system dysfunction in Disc1tr Hemi mice was further supported by the attenuated cerebral metabolic response to the NMDA receptor (NMDAR) antagonist ketamine and decreased hippocampal expression of NMDAR subunits 2A and 2B in these animals. These data show that the Disc1 truncation in Disc1tr Hemi mice induces a range of translationally relevant endophenotypes underpinned by glutamate system dysfunction and altered brain connectivity

    The resummation of inter-jet energy flow for gaps-between-jets processes at HERA

    Full text link
    We calculate resummed perturbative predictions for gaps-between-jets processes and compare to HERA data. Our calculation of this non-global observable needs to include the effects of primary gluon emission (global logarithms) and secondary gluon emission (non-global logarithms) to be correct at the leading logarithm (LL) level. We include primary emission by calculating anomalous dimension matrices for the geometry of the specific event definitions and estimate the effect of non-global logarithms in the large NcN_c limit. The resulting predictions for energy flow observables are consistent with experimental data.Comment: 31 pages, 4 figures, 2 table

    Nonlinear time-series analysis of Hyperion's lightcurves

    Get PDF
    Hyperion is a satellite of Saturn that was predicted to remain in a chaotic rotational state. This was confirmed to some extent by Voyager 2 and Cassini series of images and some ground-based photometric observations. The aim of this aticle is to explore conditions for potential observations to meet in order to estimate a maximal Lyapunov Exponent (mLE), which being positive is an indicator of chaos and allows to characterise it quantitatively. Lightcurves existing in literature as well as numerical simulations are examined using standard tools of theory of chaos. It is found that existing datasets are too short and undersampled to detect a positive mLE, although its presence is not rejected. Analysis of simulated lightcurves leads to an assertion that observations from one site should be performed over a year-long period to detect a positive mLE, if present, in a reliable way. Another approach would be to use 2---3 telescopes spread over the world to have observations distributed more uniformly. This may be achieved without disrupting other observational projects being conducted. The necessity of time-series to be stationary is highly stressed.Comment: 34 pages, 12 figures, 4 tables; v2 after referee report; matches the version accepted in Astrophysics and Space Scienc

    Hadronic final states in deep-inelastic scattering with Sherpa

    Full text link
    We extend the multi-purpose Monte-Carlo event generator Sherpa to include processes in deeply inelastic lepton-nucleon scattering. Hadronic final states in this kinematical setting are characterised by the presence of multiple kinematical scales, which were up to now accounted for only by specific resummations in individual kinematical regions. Using an extension of the recently introduced method for merging truncated parton showers with higher-order tree-level matrix elements, it is possible to obtain predictions which are reliable in all kinematical limits. Different hadronic final states, defined by jets or individual hadrons, in deep-inelastic scattering are analysed and the corresponding results are compared to HERA data. The various sources of theoretical uncertainties of the approach are discussed and quantified. The extension to deeply inelastic processes provides the opportunity to validate the merging of matrix elements and parton showers in multi-scale kinematics inaccessible in other collider environments. It also allows to use HERA data on hadronic final states in the tuning of hadronisation models.Comment: 32 pages, 22 figure
    corecore