6,555 research outputs found

    On the Dynamics of Light Quarks in QCD

    Full text link
    We describe recent results concerning the behavior of lattice QCD with light dynamical Wilson and Staggered quarks. We show that it is possible to reach regions of parameter space with light pions mπ0.2/am_\pi\approx 0.2/a using Wilson fermions. If the Hybrid Molecular Dynamics (HMD) algorithm is used with the same parameters it gives incorrect results. We also present preliminary results using a higher-order integration scheme.Comment: 4 pages (all in postscript), proceedings of LAT'9

    Testing Algorithms for Finite Temperature Lattice QCD

    Get PDF
    We discuss recent algorithmic improvements in simulating finite temperature QCD on a lattice. In particular, the Rational Hybrid Monte Carlo(RHMC) algorithm is employed to generate lattice configurations for 2+1 flavor QCD. Unlike the Hybrid R Algorithm, RHMC is reversible, admitting a Metropolis accept/reject step that eliminates the O(δt2)\mathcal{O}(\delta t^2) errors inherent in the R Algorithm. We also employ several algorithmic speed-ups, including multiple time scales, the use of a more efficient numerical integrator, and Hasenbusch pre-conditioning of the fermion force.Comment: 4 pages, 2 figures, poster presented at International Conference on Strong and Electroweak Matter 2006 (SEWM2006), BNL, May 10-13, 200

    Progress on lattice QCD algorithms

    Get PDF
    I review recent progress on algorithms for calculating quark propagators and for simulating full QCD.Comment: 8 uuencoded PostScript pages, contribution to LAT95 (fig.1 simplified to conserve space; available upon request

    Recent Developments in Fermion Simulation Algorithms

    Get PDF
    A summary of recent developments in the field of simulation algorithms for dynamical fermions is given.Comment: Plenary talk given at the International Symposium on Lattice Field Theory, 4-8 June 1996, St. Louis, Mo, USA, Latex, 3 Figures, 7 page

    Software Citation in HEP: Current State and Recommendations for the Future

    Full text link
    In November 2022, the HEP Software Foundation (HSF) and the Institute for Research and Innovation for Software in High-Energy Physics (IRIS-HEP) organized a workshop on the topic of Software Citation and Recognition in HEP. The goal of the workshop was to bring together different types of stakeholders whose roles relate to software citation and the associated credit it provides in order to engage the community in a discussion on: the ways HEP experiments handle citation of software, recognition for software efforts that enable physics results disseminated to the public, and how the scholarly publishing ecosystem supports these activities. Reports were given from the publication board leadership of the ATLAS, CMS, and LHCb experiments and HEP open source software community organizations (ROOT, Scikit-HEP, MCnet), and perspectives were given from publishers (Elsevier, JOSS) and related tool providers (INSPIRE, Zenodo). This paper summarizes key findings and recommendations from the workshop as presented at the 26th International Conference on Computing In High Energy and Nuclear Physics (CHEP 2023).Comment: 7 pages, 2 listings. Contribution to the Proceedings of the 26th International Conference on Computing In High Energy and Nuclear Physics (CHEP 2023

    The Kentucky Noisy Monte Carlo Algorithm for Wilson Dynamical Fermions

    Get PDF
    We develop an implementation for a recently proposed Noisy Monte Carlo approach to the simulation of lattice QCD with dynamical fermions by incorporating the full fermion determinant directly. Our algorithm uses a quenched gauge field update with a shifted gauge coupling to minimize fluctuations in the trace log of the Wilson Dirac matrix. The details of tuning the gauge coupling shift as well as results for the distribution of noisy estimators in our implementation are given. We present data for some basic observables from the noisy method, as well as acceptance rate information and discuss potential autocorrelation and sign violation effects. Both the results and the efficiency of the algorithm are compared against those of Hybrid Monte Carlo. PACS Numbers: 12.38.Gc, 11.15.Ha, 02.70.Uu Keywords: Noisy Monte Carlo, Lattice QCD, Determinant, Finite Density, QCDSPComment: 30 pages, 6 figure

    CMS Partial Releases: Model, Tools, and Applications. Online and Framework-Light Releases

    Get PDF
    The CMS Software project CMSSW embraces more than a thousand packages organized in subsystems for analysis, event display, reconstruction, simulation, detector description, data formats, framework, utilities and tools. The release integration process is highly automated by using tools developed or adopted by CMS. Packaging in rpm format is a built-in step in the software build process. For several well-defined applications it is highly desirable to have only a subset of the CMSSW full package bundle. For example, High Level Trigger algorithms that run on the Online farm, and need to be rebuilt in a special way, require no simulation, event display, or analysis packages. Physics analysis applications in Root environment require only a few core libraries and the description of CMS specific data formats. We present a model of CMS Partial Releases, used for preparation of the customized CMS software builds, including description of the tools used, the implementation, and how we deal with technical challenges, such as resolving dependencies and meeting special requirements for concrete applications in a highly automated fashion

    Screening disability insurance applications

    Get PDF
    This paper investigates the effects of stricter screening of disability insurance applications. A large-scale experiment was setup where in two of the 26 Dutch regions case workers of the disability insurance administration were instructed to screen applications more stringently. The empirical results show that stricter screening reduces long-term sickness absenteeism and disability insurance applications. We find evidence for direct effects of stricter screening on work resumption during the period of sickness absence and for self-screening by potential disability insurance applicants. Stricter screening seems to improve targeting efficiency, without inducing negative spillover effects to the inflow into unemployment insurance. The costs of stricter screening are only a small fraction of the monetary benefits.Disability insurance; experiment; policy evaluation; sickness absenteeism; self-screening
    corecore