4 research outputs found

    The 2024 Europe report of the Lancet Countdown on health and climate change: unprecedented warming demands unprecedented action

    Get PDF
    Record-breaking temperatures were recorded across the globe in 2023. Without climate action, adverse climate-related health impacts are expected to worsen worldwide, affecting billions of people. Temperatures in Europe are warming at twice the rate of the global average, threatening the health of populations across the continent and leading to unnecessary loss of life. The Lancet Countdown in Europe was established in 2021, to assess the health profile of climate change aiming to stimulate European social and political will to implement rapid health-responsive climate mitigation and adaptation actions. In 2022, the collaboration published its indicator report, tracking progress on health and climate change via 33 indicators and across five domains. This new report tracks 42 indicators highlighting the negative impacts of climate change on human health, the delayed climate action of European countries, and the missed opportunities to protect or improve health with health-responsive climate action. The methods behind indicators presented in the 2022 report have been improved, and nine new indicators have been added, covering leishmaniasis, ticks, food security, health-care emissions, production and consumption-based emissions, clean energy investment, and scientific, political, and media engagement with climate and health. Considering that negative climate-related health impacts and the responsibility for climate change are not equal at the regional and global levels, this report also endeavours to reflect on aspects of inequality and justice by highlighting at-risk groups within Europe and Europe's responsibility for the climate crisis

    Estimating past, present and future trends in the global distribution and abundance of the arbovirus vector Aedes aegypti

    Get PDF
    Background: Aedes aegypti is the principal vector for several important arbovirus diseases, including dengue, chikungunya, yellow fever, and Zika. While recent empirical research has attempted to identify the current global distribution of the vector, the seasonal, and longer-term dynamics of the mosquito in response to trends in climate, population, and economic development over the twentieth and the twenty-first century remains to be elucidated. Methods: In this study, we use a process-based mathematical model to estimate global vector distribution and abundance. The model is based on the lifecycle of the vector and its dependence on climate, and the model sensitivity to socio-economic development is tested. Model parameters were generally empirically based, and the model was calibrated to global databases and time series of occurrence and abundance records. Climate data on temperature and rainfall were taken from CRU TS3.25 (1901–2015) and five global circulation models (CMIP5; 2006–2099) forced by a high-end (RCP8.5) and a low-end (RCP2.6) emission scenario. Socio-economic data on global GDP and human population density were from ISIMIP (1950–2099). Findings: The change in the potential of global abundance in A. aegypti over the last century up to today is estimated to be an increase of 9.5% globally and a further increase of 20 or 30% by the end of this century under a low compared to a high carbon emission future, respectively. The largest increase has occurred in the last two decades, indicating a tipping point in climate-driven global abundance which will be stabilized at the earliest in the mid-twenty-first century. The realized abundance is estimated to be sensitive to socioeconomic development. Interpretation: Our data indicate that climate change mitigation, i.e., following the Paris Agreement, could considerably help in suppressing risks of increased abundance and emergence of A. aegypti globally in the second half of the twenty-first century.Originally included in thesis in manuscript form.</p

    The 2022 Europe report of the Lancet Countdown on health and climate change : towards a climate resilient future

    Get PDF
    In the past few decades, major public health advances have happened in Europe, with drastic decreases in premature mortality and a life expectancy increase of almost 9 years since 1980. European countries have some of the best health-care systems in the world. However, Europe is challenged with unprecedented and overlapping crises that are detrimental to human health and livelihoods and threaten adaptive capacity, including the COVID-19 pandemic, the Russian invasion of Ukraine, the fastest-growing migrant crisis since World War 2, population displacement, environmental degradation, and deepening inequalities. Compared with pre-industrial times, the mean average European surface air temperature increase has been almost 1°C higher than the average global temperature increase, and 2022 was the hottest European summer on record. As the world's third largest economy and a major contributor to global cumulative greenhouse gas emissions, Europe is a key stakeholder in the world's response to climate change and has a global responsibility and opportunity to lead the transition to becoming a low-carbon economy and a healthier, more resilient society. The Lancet Countdown in Europe is a collaboration of 44 leading researchers, established to monitor the links between health and climate change in Europe and to support a robust, evidence-informed response to protect human health. Mirroring the Global Lancet Countdown, this report monitors the health effects of climate change and the health co-benefits of climate action in Europe. Indicators will be updated on an annual basis and new indicators will be incorporated to provide a broad overview to help guide policies to create a more climate-resilient future
    corecore