18 research outputs found

    The value of the spineless monkey orange tree (Strychnos madagascariensis) for conservation of northern sportive lemurs (Lepilemur milanoii and L. ankaranensis)

    Get PDF
    Tree hollows provide shelters for a large number of forest-dependent vertebrate species worldwide. In  Madagascar, where high historical and ongoing rates of deforestation and forest degradation are  responsible for a major environmental crisis, reduced availability of tree hollows may lead to declines in hollow-dwelling species such as sportive lemurs, one of the most species-rich groups of lemurs. The identification of native tree species used by hollow-dwelling lemurs may facilitate targeted management interventions to maintain or improve habitat quality for these lemurs. During an extensive survey of sportive lemurs in northern Madagascar, we identified one tree species, Strychnos madagascariensis (Loganiaceae), the spineless monkey orange tree, as a principal sleeping site of two species of northern sportive lemurs, Lepilemur ankaranensis and L. milanoii (Lepilemuridae). This tree species represented 32.5% (n=150) of the 458 sleeping sites recorded. This result suggests that S. madagascariensis may be valuable for the conservation of hollow-dwelling lemurs. De nombreux vertĂ©brĂ©s forestiers Ă  travers le monde trouvent refuge dans des cavitĂ©s et des trous  d’arbres. À Madagascar, les taux de dĂ©forestation historiques et actuels sont responsables d’une crise environnementale majeure. Dans ce contexte, une disponibilitĂ© rĂ©duite d’arbres pourvus de cavitĂ©s  pourrait entrainer le dĂ©clin des espĂšces dĂ©pendant de ces abris comme par exemple les lĂ©pilemurs, un des groupes de lĂ©muriens les plus riches en espĂšces. L’identification des espĂšces d’arbres indigĂšnes creusĂ©s de trous et utilisĂ©s par les lĂ©muriens pourrait faciliter la mise en place d’actions de conservation ayant pour but de maintenir ou amĂ©liorer l’habitat de ces lĂ©muriens. Au cours d’une Ă©tude rĂ©alisĂ©e dans le Nord de Madagascar, nous avons observĂ© que Strychnos madagascariensis  (Loganiaceae) Ă©tait   frĂ©quemment utilisĂ© comme site dortoir par les deux espĂšces de lĂ©pilemurs prĂ©sentes, Lepilemur   ankaranensis and L. milanoii (Lepilemuridae). Cette espĂšce d’arbre concernait 32,5% (n = 150) des 458  sites dortoirs enregistrĂ©s. Ce rĂ©sultat suggĂšre que S. madagascariensis pourrait ĂȘtre important pour la  conservation des lĂ©muriens dĂ©pendant de sites dortoirs

    Fungal Planet description sheets : 951–1041

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antarctica,Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina,Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera,Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbiaficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy onrotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae(incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannacciifrom pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongisporaon resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma cavernafrom carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. CostaRica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambiguaand Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood.Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracyllagen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyriumviticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiaeon Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum fromsaline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostromaencephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots ofEucalyptus grandis x urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficiumon leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter ofEugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl.Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladiumeucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp.macrocarpa, Harzia metro-sideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamycesgen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosilliamayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloesp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesiastrelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam.nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicilliumcuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpusfalcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi,Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidiumblechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomycesknysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood ingoldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycinacortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensison dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litterof Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris.Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis onleaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomycesjuncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomycesmelaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides x lanceolata, Pseudocamarosporiumeucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascusturneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii onleaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological andculture characteristics are supported by DNA barcodes

    Cross Adaptation - Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia

    Get PDF
    To prepare for extremes of heat, cold or low partial pressures of O2, humans can undertake a period of acclimation or acclimatization to induce environment specific adaptations e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. Whilst these strategies are effective, they are not always feasible, due to logistical impracticalities. Cross adaptation is a term used to describe the phenomenon whereby alternative environmental interventions e.g. HA, or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate intensity exercise at altitude via adaptations allied to improved oxygen delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on oxygen delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross tolerance. The effects of CA on markers of cross tolerance is an area requiring further investigation. Because much of the evidence relating to cross adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles

    The importance of the altricial – precocial spectrum for social complexity in mammals and birds:A review

    Get PDF
    Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems

    The endemic Comoros Islands fruit bat Rousettus obliviosus: ecology, conservation, and Red List status

    Get PDF
    Rousettus obliviosus is a megachiropteran bat endemic to the Comoros Islands in the western Indian Ocean. The species is broadly distributed on Grande Comore, MohĂ©li, and Anjouan, but appears to be absent from Mayotte. Roost sites were found to be both shallow and deep caves, in dark locations with infrequent human disturbance. Colony size ranged from 100 to several thousand and at two sites seasonal variation was observed. Total estimated population size was 7,100–17,100. R. obliviosus fed on a variety of native and non-native tree fruits and flowers, and was found in native forest habitats, underplanted forest and agricultural areas. R. obliviosus is a manoeuvrable flyer able to hover for brief periods and may echolocate. A small range, sensitivity to disturbance, limited roost site availability and deforestation combine to threaten this species. We suggest that the current IUCN Red List status of Lower Risk: near threatened should be revised to Vulnerable. Protection of roost sites, further surveys to identify additional roosts, further ecological research, and protection of remaining forest are conservation priorities for R. obliviosus.published_or_final_versio

    Calibration of initial measurements from the full aperture backscatter system on the National Ignition Facility

    No full text
    The full aperture backscatter system provides a measure of the spectral power, and integrated energy scattered by stimulated Brillouin (348-354 nm) and Raman (400-800 nm) scattering into the final focusing lens of the first four beams of the NIF laser. The system was designed to provide measurements at the highest expected fluences with: (1) spectral and temporal resolution, (2) beam aperture averaging, and (3) near-field imaging. This is accomplished with a strongly attenuating diffusive fiber coupler and streaked spectrometer and separate calibrated time integrated spectrometers, and imaging cameras. A new technique determines the wavelength dependent sensitivity of the complete system with a calibrated Xe lamp. Data from the calibration system are combined with scattering data from targets to produce the calibrated power and energy measurements that show significant corrections due to the broad band calibrations. (C) 2004 American Institute of Physics

    Size-Energy Relationships in Ecological Communities

    Get PDF
    Hypotheses that relate body size to energy use are of particular interest in community ecology and macroecology because of their potential to facilitate quantitative predictions about species interactions and to clarify complex ecological patterns. One prominent size-energy hypothesis, the energetic equivalence hypothesis, proposes that energy use from shared, limiting resources by populations or size classes of foragers will be independent of body size. Alternative hypotheses propose that energy use will increase with body size, decrease with body size, or peak at an intermediate body size. Despite extensive study, however, size-energy hypotheses remain controversial, due to a lack of directly-measured data on energy use, a tendency to confound distinct scaling relationships, and insufficient attention to the ecological contexts in which predicted relationships are likely to occur. Our goal, therefore, was to directly evaluate size-energy hypotheses while clarifying how results would differ with alternate methods and assumptions. We comprehensively tested size-energy hypotheses in a vertebrate frugivore guild in a tropical forest in Madagascar. Our test of size-energy hypotheses, which is the first to examine energy intake directly, was consistent with the energetic equivalence hypothesis. This finding corresponds with predictions of metabolic theory and models of energy distribution in ecological communities, which imply that body size does not confer an advantage in competition for energy among populations or size classes of foragers. This result was robust to different assumptions about energy regulation. Our results from direct energy measurement, however, contrasted with those obtained with conventional methods of indirect inference from size-density relationships, suggesting that size-density relationships do not provide an appropriate proxy for size-energy relationships as has commonly been assumed. Our research also provides insights into mechanisms underlying local size-energy relationships and has important implications for predicting species interactions and for understanding the structure and dynamics of ecological communities
    corecore