169 research outputs found

    How faster productivity growth in low-skill sectors contribute to wage stagnation

    Get PDF
    Because productivity grows unevenly, workers reallocate between sectors, and low-skill wages stagnate, write Rachel Ngai and Orhun Sevin

    Airway Smooth Muscle Inflammation Is Regulated by MicroRNA-145 in COPD.

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a common, highly debilitating disease of the airways, primarily caused by smoking. Chronic inflammation and structural remodelling are key pathological features of this disease, in part caused by the aberrant function of airway smooth muscle (ASM) cells under the regulation of transforming growth factor (TGF)-Ξ². MicroRNAs are short, non-coding gene transcripts involved in the negative regulation of specific target genes, through their interactions with messenger RNAs. Previous studies have proposed that microRNA-145 (miR-145) may interact with SMAD3, an important downstream signalling molecule of the TGF-Ξ² pathway. TGF-Ξ² was used to stimulate primary human ASM cells isolated from healthy non-smokers, healthy smokers and COPD patients. This resulted in a TGF-Ξ²-dependent increase in CXCL8 and IL-6 release, most notably in the cells from COPD patients. TGF-Ξ² stimulation increased SMAD3 expression, only in cells from COPD patients, with a concurrent increased miR-145 expression. Regulation of miR-145 was found to be negatively controlled by pathways involving the MAP kinases, MEK-1/2 and p38 MAPK. Subsequent, overexpression of miR-145 (using synthetic mimics) in ASM cells from patients with COPD suppressed IL-6 and CXCL8 release, to levels comparable to the non-smoker controls. Therefore, this study suggests that miR-145 negatively regulates pro-inflammatory cytokine release from ASM cells in COPD by targeting SMAD3

    Outcomes of early switching from intravenous to oral antibiotics on medical wards

    Get PDF
    OBJECTIVES: To evaluate outcomes following implementation of a checklist with criteria for switching from intravenous (iv) to oral antibiotics on unselected patients on two general medical wards. METHODS: During a 12 month intervention study, a printed checklist of criteria for switching on the third day of iv treatment was placed in the medical charts. The decision to switch was left to the discretion of the attending physician. Outcome parameters of a 4 month control phase before intervention were compared with the equivalent 4 month period during the intervention phase to control for seasonal confounding (before-after study; April to July of 2006 and 2007, respectively): 250 episodes (215 patients) during the intervention period were compared with the control group of 176 episodes (162 patients). The main outcome measure was the duration of iv therapy. Additionally, safety, adherence to the checklist, reasons against switching patients and antibiotic cost were analysed during the whole year of the intervention (n = 698 episodes). RESULTS: In 38% (246/646) of episodes of continued iv antibiotic therapy, patients met all criteria for switching to oral antibiotics on the third day, and 151/246 (61.4%) were switched. The number of days of iv antibiotic treatment were reduced by 19% (95% confidence interval 9%-29%, P = 0.001; 6.0-5.0 days in median) with no increase in complications. The main reasons against switching were persisting fever (41%, n = 187) and absence of clinical improvement (41%, n = 185). CONCLUSIONS: On general medical wards, a checklist with bedside criteria for switching to oral antibiotics can shorten the duration of iv therapy without any negative effect on treatment outcome. The criteria were successfully applied to all patients on the wards, independently of the indication (empirical or directed treatment), the type of (presumed) infection, the underlying disease or the group of antibiotics being used

    Pneumoconiosis and respiratory problems in dental laboratory technicians: Analysis of 893 dental technicians

    Full text link
    Objectives: To explore the rate of pneumoconiosis in dental technicians (DTP) and to evaluate the risk factors. Material and Methods: Data of 893 dental technicians, who were admitted to our hospital in the period January 2007–May 2012, from 170 dental laboratories were retrospectively examined. Demographic data, respiratory symptoms, smoking status, work duration, working fields, exposure to sandblasting, physical examination findings, chest radiographs, pulmonary function tests and high-resolution computed tomography results were evaluated. Results: Dental technicians’ pneumoconiosis rate was 10.1% among 893 cases. The disease was more common among males and in those exposed to sandblasting who had 77-fold higher risk of DTP. The highest profusion subcategory was 3/+ (according to the International Labour Organization (ILO) 2011 standards) and the large opacity rate was 13.3%. Conclusions: To the best of our knowledge, it was the largest DTP case series (N = 893/90) in the literature in English. Health screenings should be performed regularly for the early diagnosis of pneumoconiosis, which is an important occupational disease for dental technicians

    Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits.

    Get PDF
    Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure
    • …
    corecore