3,396 research outputs found
FAIR principles and the IEDB: short-term improvements and a long-term vision of OBO-foundry mediated machine-actionable interoperability.
The Immune Epitope Database (IEDB), at www.iedb.org, has the mission to make published experimental data relating to the recognition of immune epitopes easily available to the scientific public. By presenting curated data in a searchable database, we have liberated it from the tables and figures of journal articles, making it more accessible and usable by immunologists. Recently, the principles of Findability, Accessibility, Interoperability and Reusability have been formulated as goals that data repositories should meet to enhance the usefulness of their data holdings. We here examine how the IEDB complies with these principles and identify broad areas of success, but also areas for improvement. We describe short-term improvements to the IEDB that are being implemented now, as well as a long-term vision of true 'machine-actionable interoperability', which we believe will require community agreement on standardization of knowledge representation that can be built on top of the shared use of ontologies
High frequency acoustic modes in liquid gallium at the melting point
The microscopic dynamics in liquid gallium (l-Ga) at melting (T=315 K) has
been studied by inelastic x-ray scattering. We demonstrate the existence of
collective acoustic-like modes up to wave-vectors above one half of the first
maximum of the static structure factor, at variance with earlier results from
inelastic neutron scattering data [F.J. Bermejo et al. Phys. Rev. E 49, 3133
(1994)]. Despite the structural (an extremely rich polymorphism and rather
complex phase diagram) and electronic (mixed valence) peculiarity of l-Ga, its
collective dynamics is strikingly similar to the one of Van der Walls and
alkali metals liquids. This result speaks in favor of the universality of the
short time dynamics in monatomic liquids rather than of system-specific
dynamics.Comment: LaTex format, 11 pages, 4 EncapsulatedPostScript figure
Electron-phonon interaction in n-doped cuprates: an Inelastic X-ray Scattering study
Inelastic x-ray scattering (IXS) with very high (meV) energy resolution has
become a valuable spectroscopic tool, complementing the well established
coherent inelastic neutron scattering (INS) technique for phonon dispersion
investigations. In the study of crystalline systems IXS is a viable alternative
to INS, especially in cases where only small samples are available. Using IXS,
we have measured the phonon dispersion of Nd_{1.86}Ce_{0.14}CuO_{4+\delta}
along the [x,0,0] and [x,x,0] in-plane directions. Compared to the undoped
parent compound, the two highest longitudinal optical (LO) phonon branches are
shifted to lower energies because of Coulomb-screening effects brought about by
the doped charge carriers. An additional anomalous softening of the highest
branch is observed around q=(0.2,0,0). This anomalous softening, akin to what
has been observed in other compounds, provides evidence for a strong
electron-phonon coupling in the electron-doped high-temperature
superconductors.Comment: Proceedings of the SATT11 conference, Vietri sul Mare - Italy (March
2002); accepted for publication on Int. J. Mod. Phys.
Evidence of anomalous dispersion of the generalized sound velocity in glasses
The dynamic structure factor, S(Q,w), of vitreous silica, has been measured
by inelastic X-ray scattering in the exchanged wavevector (Q) region Q=4-16.5
nm-1 and up to energies hw=115 meV in the Stokes side. The unprecedented
statistical accuracy in such an extended energy range allows to accurately
determine the longitudinal current spectra, and the energies of the vibrational
excitations. The simultaneous observation of two excitations in the acoustic
region, and the persistence of propagating sound waves up to Q values
comparable with the (pseudo-)Brillouin zone edge, allow to observe a positive
dispersion in the generalized sound velocity that, around Q=5 nm-1, varies from
6500 to 9000 m/s: this phenomenon was never experimentally observed in a glass.Comment: 5 pages, 3 figures. To appear in Phys. Rev.
Acoustic Nature of the Boson Peak in Vitreous Silica
New temperature dependent inelastic x-ray (IXS) and Raman (RS) scattering
data are compared to each other and with existing inelastic neutron scattering
data in vitreous silica (v-SiO_2), in the 300 - 1775 K region. The IXS data
show collective propagating excitations up to Q=3.5 nm^-1. The temperature
behaviour of the excitations at Q=1.6 nm^-1 matches that of the boson peak
found in INS and RS. This supports the acoustic origin of the excess of
vibrational states giving rise to the boson peak in this glass.Comment: 10 pages and 4 figure
Crystal-like high frequency phonons in the amorphous phases of solid water
The high frequency dynamics of low- (LDA) and high-density amorphous-ice
(HDA) and of cubic ice (I_c) has been measured by inelastic X-ray Scattering
(IXS) in the 1-15 nm^{-1} momentum transfer (Q) range. Sharp phonon-like
excitations are observed, and the longitudinal acoustic branch is identified up
to Q = 8nm^{-1} in LDA and I_c and up to 5nm^{-1} in HDA. The narrow width of
these excitations is in sharp contrast with the broad features observed in all
amorphous systems studied so far. The "crystal-like" behavior of amorphous
ices, therefore, implies a considerable reduction in the number of decay
channels available to sound-like excitations which is assimilated to low local
disorder.Comment: 4 pages, 3 figure
High frequency longitudinal and transverse dynamics in water
High-resolution, inelastic x-ray scattering measurements of the dynamic
structure factor S(Q,\omega) of liquid water have been performed for wave
vectors Q between 4 and 30 nm^-1 in distinctly different thermodynamic
conditions (T= 263 - 420 K ; at, or close to, ambient pressure and at P = 2
kbar). In agreement with previous inelastic x-ray and neutron studies, the
presence of two inelastic contributions (one dispersing with Q and the other
almost non-dispersive) is confirmed. The study of their temperature- and
Q-dependence provides strong support for a dynamics of liquid water controlled
by the structural relaxation process. A viscoelastic analysis of the
Q-dispersing mode, associated with the longitudinal dynamics, reveals that the
sound velocity undergoes the complete transition from the adiabatic sound
velocity (c_0) (viscous limit) to the infinite frequency sound velocity
(c_\infinity) (elastic limit). On decreasing Q, as the transition regime is
approached from the elastic side, we observe a decrease of the intensity of the
second, weakly dispersing feature, which completely disappears when the viscous
regime is reached. These findings unambiguously identify the second excitation
to be a signature of the transverse dynamics with a longitudinal symmetry
component, which becomes visible in the S(Q,\omega) as soon as the purely
viscous regime is left.Comment: 28 pages, 12 figure
- …
