300 research outputs found
Association between work related stress and health related quality of life: the impact of socio-demographic variables. A cross sectional study in a region of central Italy
The aim of this work is investigate relationship between health-related quality of life and work-related stress and the impact of gender, education level, and age on this relationship. A cross-sectional study was conducted among workers of various setting in Rome and Frosinone. Work-related stress was measured with a demand-control questionnaire and health-related functioning by SF (short form)-12 health survey. There were 611 participants. Men reported high mental composite summary (MCS) and physical composite summary (PCS). In multivariate analysis age, gender (p < 0.001) and job demand (0.045) predicted low PCS. Low MCS predicted poor PCS. Job demand and educational level resulted negatively associated with MCS. In an analysis stratified for age, gender, and educational level, gender and age resulted effect modifier for MCS, gender and education level for PCS. In women increase of decision latitude predict (p = 0.001) an increase in MCS; a low job demand predict high MCS in male (p ≤ 0.001). In younger workers, a lower level of job demand predicted high MCS (<0.001). For PCS, gender and education level resulted effect modifier. In women, high decision latitude predicted higher PCS (p = 0.001) and lower level of job demand results in higher PCS (p ≤ 0.001). Higher educational level resulted predictor of low PCS. Management of risk about work-related stress should consider socio-demographic factors
Creatine as an antioxidant
none7Creatine monohydrate (Cr), the most diffuse supplement in the sports industry, is receiving greater attention because of its beneficial effects in a wide number of human degenerative diseases and conditions. These effects can be barely explained on the basis of the sole ergogenic role of the Cr/CrP system. Indeed, a wide number of research articles indicate that Cr is capable of exerting multiple, non-energy related, effects on diverse and relevant cellular targets. Among these effects, the antioxidant activity of Cr emerges as an additional mechanism which is likely to play a supportive role in the Cr-cytoprotection paradigm.openP. Sestili; C. Martinelli; E. Colombo; E. Barbieri; L. Potenza; S. Sartini; C. FimognariSestili, Piero; Martinelli, Chiara; Colombo, Evelin; Barbieri, Elena; Potenza, LUCIA ANNA MARIA; Sartini, Stefano; C., Fimognar
Qualitative characterization of unrefined durum wheat air-classified fractions
Durum wheat milling is a key process step to improve the quality and safety of final prod-ucts. The aim of this study was to characterize three bran-enriched milling fractions (i.e., F250, G230 and G250), obtained from three durum wheat grain samples, by using an innovative micronization and air-classification technology. Milling fractions were characterized for main standard quality parameters and for alveographic properties, starch composition and content, phenolic acids, antioxidant activity and ATIs. Results showed that yield recovery, ash content and particle size distributions were influenced either by the operating conditions (230 or 250) or by the grain samples. While total starch content was lower in the micronized sample and air-classified fractions, the P/L ratio increased in air-classified fractions as compared to semolina. Six main individual phenolic acids were identified through HPLC-DAD analysis (i.e., ferulic acid, vanillic acid, p-coumaric acid, sinapic acid, syringic and p-hydroxybenzoic acids). Compared to semolina, higher contents of all individual phenolic components were found in all bran-enriched fractions. The highest rise of TPAs occurred in the F250 fraction, which was maintained in the derived pasta. Moreover, bran-enriched fractions showed significant reductions of ATIs content versus semolina. Overall, our data suggest the potential health benefits of F250, G230 and G250 and support their use to make durum-based foods
The suppression of TdMRP3 genes reduces the phytic acid and increases the nutrient accumulation in durum wheat grain
Micronutrient malnutrition affects more than half of the world population. Reduced bioavailability of microelements in the raw materials is considered one of the main causes of mineral deficiency in populations whose diet is largely based on the consumption of staple crops. In this context, the production of low phytic acid (lpa) cereals is a main goal of the breeding programs, as phytic acid (PA) binds essential mineral cations such as iron (Fe), zinc (Zn), manganese (Mn), potassium (K), calcium (Ca) and magnesium (Mg) precipitating in the form of phytate salts poorly digested by monogastric animals, including humans, due to the lack of phytases in the digestive tract. Since PA limits the bioavailability of microelements, it is widely recognized as an anti-nutritional compound. A Targeting Induced Local Lesions IN Genomes (TILLING) approach has been undertaken to silence the genes encoding the TdABCC13 proteins, known as Multidrug-Resistance associated Proteins 3 (TdMRP3), transporters involved in the accumulation of PA inside the vacuole in durum wheat. The TdMRP3 complete null genotypes showed a significant reduction in the content of PA and were able to accumulate a higher amount of essential micronutrients (Fe, Zn, Mn) compared to the control. The number of spikelets and seeds per spike, traits associated with the agronomic performances, were reduced compared to the control, but the negative effect was in part balanced by the increased grain weight. The TdMRP3 mutant lines showed morphological differences in the root apparatus such as a significant decrease in the number of root tips, root length, volume and surface area and an increase in root average diameter compared to the control plants. These materials represent a promising basis for obtaining new commercial durum wheats with higher nutritional value
Tablet splitting in elderly patients with dementia: The case of quetiapine
Quetiapine is an atypical antipsychotic approved for treating schizophrenia, bipolar depression, and mania but is frequently used in an off-label manner to control the behavioral and psychological symptoms of dementia in elderly patients with dementia. Due to the need to personalize doses for elderly patients with dementia, quetiapine tablet manipulation is widespread in hospital settings, long-term care facilities, and patient homes. The aim of this study was to assess the impact of the different splitting techniques on quetiapine fumarate tablets by analysing the obtained sub-divided tablets and to discuss compliance with the European Pharmacopoeia limits on whole and split tablets. Quetiapine fumarate tablets of two dose strengths were taken at random (in a number able to assure a power of 0.8 during statistical comparison) and were split with a kitchen knife or tablet cutter. The weight and the drug content were determined for each half tablet. The obtained data were compared to the European Pharmacopoeia limits. The differences between the different splitting techniques were statistically tested. Data showed that split tablets, independently of the dose strength and the technique employed, were not compliant with the European Pharmacopoeia specifications for both entire and subdivided tablets in terms of weight and content uniformity. Thus, such a common practice could have potential effects on treatment efficacy and toxicity, especially when also considering the fragility of the elderly target population in which polypharmacotherapy is very common. These results indicate a compelling need for flexible quetiapine formulations that can assure more accurate dose personalization
CRISPR-Cas9 Multiplex Editing of the α-Amylase/Trypsin Inhibitor Genes to Reduce Allergen Proteins in Durum Wheat
Wheat and its derived foods are widespread, representing one of the main food sources globally. During the last decades, the incidence of disorders related to wheat has become a global issue for the human population, probably linked to the spread of wheat-derived foods. It has been ascertained that structural and metabolic proteins, like \u3b1-amylase/trypsin inhibitors (ATI), are involved in the onset of wheat allergies (bakers' asthma) and probably Non-Coeliac Wheat Sensitivity (NCWS). The ATI are a group of exogenous protease inhibitors, which are encoded by a multigene family dispersed over several chromosomes in durum and bread wheat. WTAI-CM3 and WTAI-CM16 subunits are considered among the main proteins involved in the onset of bakers' asthma and probably NCWS. A CRISPR-Cas9 multiplexing strategy was used to edit the ATI subunits WTAI-CM3 and WTAI-CM16 in the grain of the Italian durum wheat cultivar Svevo with the aim to produce wheat lines with reduced amount of potential allergens involved in adverse reactions. Using a marker gene-free approach, whereby plants are regenerated without selection agents, homozygous mutant plants without the presence of CRISPR vectors were obtained directly from T0 generation. This study demonstrates the capability of CRISPR technology to knock out immunogenic proteins in a reduced time compared to conventional breeding programmes. The editing of the two target genes was confirmed either at molecular (sequencing and gene expression study) or biochemical (immunologic test) level. Noteworthy, as a pleiotropic effect, is the activation of the ATI 0.28 pseudogene in the edited lines
Proteomic changes and molecular effects associated with Cr(III) and Cr(VI) treatments on germinating kiwifruit pollen
The present study is aimed at identifying molecular changes elicited by Cr(III) and Cr(VI) on germinating kiwifruit pollen. To address this question, comparative proteomic and DNA laddering analyses were performed. While no genotoxic effect was detected, a number of proteins whose accumulation levels were altered by treatments were identified. In particular, the upregulation of some proteins involved in the scavenging response, cell redox homeostasis and lipid synthesis could be interpreted as an oxidative stress response induced by Cr treatment. The strong reduction of two proteins involved in mitochondrial oxidative phosphorylation and a decline in ATP levels were also observed. The decrease of pollen energy availability could be one of the causes of the severe inhibition of the pollen germination observed upon exposure to both Cr(III) and Cr(VI). Finally, proteomic and biochemical data indicate proteasome impairment: the consequential accumulation of misfolded/damaged proteins could be an important molecular mechanism of Cr(III) toxicity in pollen
An Integrated Approach to Skeletal Muscle Health in Aging
A decline in muscle mass and function represents one of the most problematic changes associated with aging, and has dramatic effects on autonomy and quality of life. Several factors contribute to the inexorable process of sarcopenia, such as mitochondrial and autophagy dysfunction, and the lack of regeneration capacity of satellite cells. The physiologic decline in muscle mass and in motoneuron functionality associated with aging is exacerbated by the sedentary lifestyle that accompanies elderly people. Regular physical activity is beneficial to most people, but the elderly need well-designed and carefully administered training programs that improve muscle mass and, consequently, both functional ability and quality of life. Aging also causes alteration in the gut microbiota composition associated with sarcopenia, and some advances in research have elucidated that interventions via the gut microbiota-muscle axis have the potential to ameliorate the sarcopenic phenotype. Several mechanisms are involved in vitamin D muscle atrophy protection, as demonstrated by the decreased muscular function related to vitamin D deficiency. Malnutrition, chronic inflammation, vitamin deficiencies, and an imbalance in the muscle-gut axis are just a few of the factors that can lead to sarcopenia. Supplementing the diet with antioxidants, polyunsaturated fatty acids, vitamins, probiotics, prebiotics, proteins, kefir, and short-chain fatty acids could be potential nutritional therapies against sarcopenia. Finally, a personalized integrated strategy to counteract sarcopenia and maintain the health of skeletal muscles is suggested in this review
Dietary habits and psychological states during covid-19 home isolation in italian college students: The role of physical exercise
Social isolation has adverse effects on mental health, physical exercise, and dietary habits. This longitudinal observational study aimed to investigate the effects of mood states and exercise on nutritional choices, on 176 college students (92 males, 84 females; 23 ± 4 years old) during the COVID-19 lockdown. During 21 days, nutrition and exercise were daily monitored, and the mood states assessed. A factor analysis was used to reduce the number of nutritional variables collected. The relationships between exercise, mood and nutrition were investigated using a multivariate general linear model and a mediation model. Seven factors were found, reflecting different nutritional choices. Exercise was positively associated with fruit, vegetables and fish consumption (p = 0.004). Depression and quality of life were, directly and inversely, associated with cereals, legumes (p = 0.005; p = 0.004) and low-fat meat intake (p = 0.040; p = 0.004). Exercise mediated the effect of mood states on fruit, vegetables and fish consumption, respectively, accounting for 4.2% and 1.8% of the total variance. Poorer mood states possibly led to unhealthy dietary habits, which can themselves be linked to negative mood levels. Exercise led to healthier nutritional choices, and mediating the effects of mood states, it might represent a key measure in uncommon situations, such as home-confinement
- …