8 research outputs found

    Electronic Structure Calculations of Magnetic Exchange Interactions in Europium Monochalcogenides

    Full text link
    Using a combination of local spin density and Hubbard 1 approximations we study the mechansim of exchange interacion in EuX (X=O, S, Se and Te). We reproduce known experimental results about bulk modulus, critical pressure for structural phase transition, magnetic ordering temperature, spin--wave dispersions as well as momentum-- and tempearuture--dependent band shift. Our numerical results show pressure induced competition between the hybirization enhanced exchange interaction and Kondo--like coupling in EuO. Possible ways to enhance T_{c} are discussed

    Calculations of Magnetic Exchange Interactions in Mott--Hubbard Systems

    Full text link
    An efficient method to compute magnetic exchange interactions in systems with strong correlations is introduced. It is based on a magnetic force theorem which evaluates linear response due to rotations of magnetic moments and uses a novel spectral density functional framework combining our exact diagonalization based dynamical mean field and local density functional theories. Applications to spin waves and magnetic transition temperatures of 3d metal mono--oxides as well as high--T_{c} superconductors are in good agreement with experiment

    Many-Body Electronic Structure of Americium metal

    Full text link
    We report computer based simulations of energetics, spectroscopy and electron-phonon interaction of americium using a novel spectral density functional method. This approach gives rise to a new concept of a many-body electronic structure and reveals the unexpected mixed valence regime of Am 5f6 electrons which under pressure acquire the 5f7 valence state. This explains unique properties of Am and addresses the fundamental issue of how the localization delocalization edge is approached from the localized side in a closed shell system.Comment: 4 pages, 3 figure

    Cellular Dynamical Mean Field Approach to Strongly Correlated Systems

    Full text link
    We propose a cellular version of dynamical-mean field theory which gives a natural generalization of its original single-site construction and is formulated in different sets of variables. We show how non-orthogonality of the tight-binding basis sets enters the problem and prove that the resulting equations lead to manifestly causal self energies.Comment: RevTex, 4 pages, 1 embedded figur

    Importance of Correlation Effects on Magnetic Anisotropy in Fe and Ni

    Full text link
    We calculate magnetic anisotropy energy of Fe and Ni by taking into account the effects of strong electronic correlations, spin-orbit coupling, and non-collinearity of intra-atomic magnetization. The LDA+U method is used and its equivalence to dynamical mean-field theory in the static limit is emphasized. Both experimental magnitude of MAE and direction of magnetization are predicted correctly near U=4 eV for Ni and U=3.5 eV for Fe. Correlations modify one-electron spectra which are now in better agreement with experiments.Comment: 4 pages, 2 figure

    # by Oldenbourg Wissenschaftsverlag, München Electronic structure and magnetic properties of solids

    No full text
    Computational crystallography Abstract. We review basic computational techniques for simulations of various magnetic properties of solids. Several applications to compute magnetic anisotropy energy, spin wave spectra, magnetic susceptibilities and temperature dependent magnetisations for a number of real systems are presented for illustrative purposes. 1
    corecore