112 research outputs found
Chimpanzee Malaria Parasites Related to Plasmodium ovale in Africa
Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Circulation, genetic diversity and evolution of human enteroviruses in Cameroon - interactions with vaccine polioviruses and simian enteroviruses
La diversité génétique des entérovirus (EVs) humains, y compris les poliovirus (PVs), circulant au Cameroun a été évaluée d'une part sur tout le territoire chez des patients atteints de paralysie flasque aiguë, et d'autre part, chez des enfants sains dans la région de l'extrême Nord du pays. Les résultats obtenus indiquent une fréquence élevée couplée à une importante diversité génétique des EVs au Cameroun. Les EVs de l'espèce Human Enterovirus C (HEV-C) représentaient jusqu'à 56,5% des isolats identifiés. En dehors des types viraux mondialement distribués, des types et variants d'EV spécifiquement Africains ont été identifiés. L'étude des échanges génétiques entre HEV-C, incluant les PVs vaccinaux, a confirmé que des recombinaisons fréquentes dans les régions non structurales du génome participent à leur diversité génétique. En particulier les PVs co-circulent et échangent les séquences de leurs régions non structurales avec les autres HEV-C notamment avec les CVA-13, -17 et -20. La co-circulation des PVs et de divers HEV-C pourrait constituer un facteur viral majeur pour l'émergence des PVs recombinants pathogènes dérivés du vaccin (VDPVs). Par ailleurs, des EVs typiquement simiens, mais aussi des EVs précédemment connus comme étant des pathogènes humains ont été identifiés dans les selles de primates non humains (PNH) vivant en captivité et en faune sauvage. En particulier, quatre nouveaux types d'EVs simiens ont été identifiés. Les résultats confirment que la transmission inter-espèces d'au moins certains types d'EV est naturellement possible et pourrait jouer un rôle dans l'émergence de nouveaux EVs de l'homme chez les PNH et vice-versa.The genetic diversity of human enteroviruses (EVs), including polioviruses (PVs), circulating in Cameroon was investigated in acute flaccid paralysis patients throughout the entire territory as well as in healthy children from the far northern region of the country. The results showed a high frequency combined with a high genetic diversity of human EVs in Cameroon. The frequency of EVs belonging to the Human Enterovirus C species (HEV-C) was as high as 56.5% of the identified isolates. Apart from worldwide distributed types, several African specific types and variants were identified. The investigation of genetic exchanges between HEV-C, including vaccine polioviruses, confirmed the fact that frequent recombination in the non structural regions of the genome contribute to their genetic diversity. PVs in particular co-circulate and exchange the sequences of their non structural regions with CVA-13, -17 and -20. The co-circulation of PVs and diverse HEV-C may be a major viral factor for the emergence of pathogenic recombinant vaccine derived PVs (VDPVs). In the other hand, simian specific EVs as well as EVs previously known human EVs were identified in the stools of captive and wild non human primates (NHP). Four novel types of simian EVs in particular were identified. The results confirm that cross-species transmission of at least some EV types can happen naturally and could play a role in the emergence of new EV types from humans to NHP and vice-versa.PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF
Detection and characterization of hepatitis B virus strains from wild-caught gorillas and chimpanzees in Cameroon, Central Africa
Molecular characterization and phylogenetic relatedness of dog-derived Rabies Viruses circulating in Cameroon between 2010 and 2016.
Rabies is enzootic among dog populations in some parts of Cameroon and the risk of human rabies is thought to be steadily high in these regions. However, the molecular epidemiology of circulating Rabies Virus (RABV) has been hardly considered in Cameroon as well as in most neighboring central African countries. To address this fundamental gap, 76 nucleoprotein (N) gene sequences of dog-derived RABV were obtained from 100 brain specimens sampled in Cameroon from 2010 to 2016. Studied sequences were subjected to molecular and phylogenetic analyses with reference strains retrieved from databases. The 71 studied Africa-1 isolates displayed 93.5-100% nucleotide (nt) and 98.3-100% amino-acid (aa) identities to each other while, the 5 studied Africa-2 isolates shared 99.4-99.7% sequence similarities at nt and aa levels. Maximum Likelihood based phylogenies inferred from nucleotide sequences confirmed all studied RABV isolates as members of the dog-related species 1 of the Lyssavirus genus. Individual isolates could be unambiguously assigned as either the Africa-1 subclade of the Cosmopolitan clade or the Africa 2 clade. The Africa-1 subclade appeared to be more prevalent and diversified. Indeed, 70 studied isolates segregated into 3 distinct circulating variants within Africa-1a lineage while a unique isolate was strikingly related to the Africa-1b lineage known to be prevalent in the neighboring Central African Republic and eastern Africa. Interestingly, all five Africa-2 isolates fell into the group-E lineage even though they appeared to be loosely related to databases available reference RABV; including those previously documented in Cameroon. This study uncovered the co-circulation of several Africa-1 and Africa-2 lineages in the southern regions of Cameroon. Striking phylogenetic outcasts to the geographic differentiation of RABV variants indicated that importation from close regions or neighboring countries apparently contributes to the sustainment of the enzootic cycle of domestic rabies in Cameroon
Serological evidence of rift valley fever Phlebovirus and Crimean-Congo hemorrhagic fever orthonairovirus infections among pygmies in the east region of Cameroon
Abstract Background Rift Valley Fever Phlebovirus (RVFV) and Crimean-Congo Hemorrhagic Fever Orthonairovirus (CCHFV) specific antibodies had been documented among humans in urban settings of the southwestern and northern Cameroon in the late 1980s. Recently, evidence for enzootic circulation of RVFV was reported among livestock in both rural and urban settings in Cameroon. However, current estimates of human exposure to RVFV and CCHFV are still to be documented in Cameroon, especially in rural areas. The aim of this study was to assess the seroprevalence of RVFV and CCHFV in rural settings in the Southeastern rain forest of Cameroon. Results Using Enzyme-linked Immunosorbent Assays, the presence of RVFV and CCHFV Immunoglobulin G antibodies was investigated in plasma samples originating from 137 Pygmies from four villages of the East region of Cameroon. The studied population was found to be 12.4% (17/137) and 4.4% (6/137) seropositive for RVFV and CCHFV, respectively. The rates of RVFV IgG were comparable between the age groups and sex. Conversely, the rate of CCHFV IgG was significantly higher among the 41–60 years old participants (p = 0.02). Conclusions This study provides a substantial evidence of the circulation of RVFV and CCHFV among rural inhabitants of the East region of Cameroon
Spatiotemporal dynamics of rabies virus detected in rabid dogs in Cameroon, 2010–2021
International audienceRabies is a viral zoonosis that causes an estimated 60,000 human deaths each year, mainly in Africa and Asia. The etiological agent of rabies, the Rabies Lyssavirus or Rabies Virus (RABV) has been characterized in dog populations in Cameroon, in previous studies. However, the dynamics of RABV maintenance and propagation in dogs are still to be documented in Cameroon. This study thus, aimed at investigating the spatial and temporal dynamics of RABV variants in Cameroon. Long genomic sequences of about 4893 nucleotides, encompassing the N, P, M and G genes as well as part of the G-L intergenic region (Ψ), were determined from 56 RABV strains recovered from dog populations in Cameroon from 2010 to 2021. Temporal and spatial dynamics of RABV circulation in Cameroon were investigated by Bayesian analyses with the BEAST 1.10.4 package from extended RABV genomic sequences data combined with their collection dates and the geographical coordinates of their sampling areas. This revealed a genetic evolution rate of 3.14 × 10-4 substitutions/site/year among Africa-1a and Africa-2 clades of RABV from Cameroon. The most recent common ancestor (MRCA) of the studied strains of the Africa-1a lineage was estimated to have emerged between 1880 and 1906 (95 % HPD; mean 1894), while that of the strains of the Africa-2 clade had a slightly later estimated origin between 1907 and 1928 (95 % HPD, mean 1918). Overall, phylogeographic analyses suggested RABV spread in Cameroon between sub-national regions. Our data provides substantial support to previous findings from similar epidemiological settings, indicating human mediated movements of infected dogs between distant cities may be a key factor in the maintenance of the enzootic cycle of rabies among dogs in Cameroon
A cheap and open HIV viral load technique applicable in routine analysis in a resource limited setting with a wide HIV genetic diversity
Abstract Background HIV infection in Cameroon is characterized by a great viral diversity with all HIV-1 groups (M, N, O, and P) and HIV-2 in circulation. HIV group determination is very important if tailored viral load analysis and treatments are to be applied. In our laboratory, HIV viral load is carried out using two platforms; Biocentric and Abbott depending on the HIV group identified. Biocentric which quantifies HIV-1 group M is a cheap and open system useful in resource limited settings. The objective of this study was to compare the viral load analyses of serologically group-indeterminate HIV samples using the two platforms with the view of reducing cost. Methods Consecutive samples received between March and May 2014, and between August and September 2014 in our laboratory for HIV viral load analysis were included. All these samples were analyzed for their HIV groups using an in-house ELISA serotyping test. All HIV-1 group M samples were quantified using the Biocentric test while all other known atypical samples (HIV-1 groups N, O and P) were analyzed using the Abbott technique. HIV group-indeterminate samples (by serotyping) were quantified with both techniques. Results Among the 6355 plasma samples received, HIV-1 group M was identified in 6026 (94.82%) cases; HIV-1 group O, in 20 (0.31%); HIV-1 group M + O, in 3 (0.05%) and HIV-2, in 3 (0.05%) case. HIV-group indeterminate samples represented about 4.76% (303/6355) and only 231 of them were available for analysis by Abbott Real-Time HIV-1 and Generic HIV Viral Load techniques. Results showed that 188 (81.39%) samples had undetectable viral load in both techniques. All the detectable samples showed high viral load, with a mean of 4.5 log copies/ml (range 2.1–6.5) for Abbott Real-Time and 4.5 log copies/ml (range 2–6.4) for Generic HIV Viral Load. The mean viral load difference between the two techniques was 0.03 log10 copies/ml and a good correlation was obtained (r 2 = 0.89; P < 0.001). Conclusion Our results suggest that cheaper and open techniques such as Biocentric could be useful alternatives for HIV viral load follow-up quantification in resource limited settings like Cameroon; even with its high viral diversity
Monkeypox virus phylogenetic similarities between a human case detected in Cameroon in 2018 and the 2017-2018 outbreak in Nigeria
International audienceA monkeypox virus was detected from a human clinical case in 2018 in Cameroon; a country where no human cases were reported since 1989. The virus exhibited close genetic relatedness with another monkeypox virus isolated in Nigeria during the 2017-2018 outbreak. Although our molecular findings argue in favor of an extension of the monkeypox outbreak from Nigeria into Cameroon, the possibility that the monkeypox virus detected could be indigenous to Cameroon cannot be ruled out
- …
