22 research outputs found

    Morphological Analysis of horizontal sensitive lobula plate tangential cells of Drosophila Melanogaster

    No full text

    Analysis of the neural circuit underlying the detection of visual motion in Drosophila melanogaster.

    No full text

    Neural mechanisms underlying sensitivity to reverse-phi motion in the fly

    Get PDF
    Optical illusions provide powerful tools for mapping the algorithms and circuits that underlie visual processing, revealing structure through atypical function. Of particular note in the study of motion detection has been the reverse-phi illusion. When contrast reversals accompany discrete movement, detected direction tends to invert. This occurs across a wide range of organisms, spanning humans and invertebrates. Here, we map an algorithmic account of the phenomenon onto neural circuitry in the fruit fly Drosophila melanogaster. Through targeted silencing experiments in tethered walking flies as well as electrophysiology and calcium imaging, we demonstrate that ON-or OFF-selective local motion detector cells T4 and T5 are sensitive to certain interactions between ON and OFF. A biologically plausible detector model accounts for subtle features of this particular form of illusory motion reversal, like the re-inversion of turning responses occurring at extreme stimulus velocities. In light of comparable circuit architecture in the mammalian retina, we suggest that similar mechanisms may apply even to human psychophysics

    Dynamic Signal Compression for Robust Motion Vision in Flies

    No full text
    Sensory systems need to reliably extract information from highly variable natural signals. Flies, for instance, use optic flow to guide their course and are remarkably adept at estimating image velocity regardless of image statistics. Current circuit models, however, cannot account for this robustness. Here, we demonstrate that the Drosophila visual system reduces input variability by rapidly adjusting its sensitivity to local contrast conditions. We exhaustively map functional properties of neurons in the motion detection circuit and find that local responses are compressed by surround contrast. The compressive signal is fast, integrates spatially, and derives from neural feedback. Training convolutional neural networks on estimating the velocity of natural stimuli shows that this dynamic signal compression can close the performance gap between model and organism. Overall, our work represents a comprehensive mechanistic account of how neural systems attain the robustness to carry out survival-critical tasks in challenging real-world environments

    Micro-connectomics: probing the organization of neuronal networks at the cellular scale.

    Get PDF
    Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with Ramón y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.This work was supported by the National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Nature Publishing Group

    Authentic research investigations of a controversial question: Can plants learn?

    No full text
    Can plants learn? This question stirs up controversy and speculation in the classroom, as it is currently doing in the scientific community at large. We leverage the controversy to ask students to contribute to the greater body of knowledge by using scientific principles in creative research projects. Ninth-grade honors biology students became familiar with original research and the surrounding controversy, and performed experiments testing two distinct forms of plant learning in Pisum sativum (pea) and Mimosa pudica (sensitive plant)

    Comprehensive characterization of the major presynaptic elements to the Drosophila OFF motion detector

    No full text
    Estimating motion is a fundamental task for the visual system of sighted animals. In Drosophila, direction-selective T4 and T5 cells respond to moving brightness increments (ON) and decrements (OFF), respectively. Current algorithmic models of the circuit are based on the interaction of two differentially filtered signals. However, electron microscopy studies have shown that T5 cells receive their major input from four classes of neurons: Tm1, Tm2, Tm4, and Tm9. Using two-photon calcium imaging, we demonstrate that T5 is the first direction-selective stage within the OFF pathway. The four cells provide an array of spatiotemporal filters to T5. Silencing their synaptic output in various combinations, we find that all input elements are involved in OFF motion detection to varying degrees. Our comprehensive survey challenges the simplified view of how neural systems compute the direction of motion and suggests that an intricate interplay of many signals results in direction selectivity

    Optogenetic and Pharmacologic Dissection of Feedforward Inhibition in Drosophila Motion Vision

    No full text
    Visual systems extract directional motion information from spatiotemporal luminance changes on the retina. An algorithmic model, the Reichardt detector, accounts for this by multiplying adjacent inputs after asymmetric temporal filtering. The outputs of two mirror-symmetrical units tuned to opposite directions are thought to be subtracted on the dendrites of wide-field motion-sensitive lobula plate tangential cells by antagonistic transmitter systems. In Drosophila, small-field T4/T5 cells carry visual motion information to the tangential cells that are depolarized during preferred and hyperpolarized during null direction motion. While preferred direction input is likely provided by excitation from T4/T5 terminals, the origin of null direction inhibition is unclear. Probing the connectivity between T4/T5 and tangential cells in Drosophila using a combination of optogenetics, electrophysiology, and pharmacology, we found a direct excitatory as well as an indirect inhibitory component. This suggests that the null direction response is caused by feedforward inhibition via yet unidentified neurons

    Gills Just Want to Have Fun: Can Fish Play Games, Just like Us?

    No full text
    Simple Summary A pending question in animal biology is whether fish are capable of complex behaviors, such as play. We investigated this by shining laser pointers of various colors into home fish tank aquariums. We tested 66 different species and found that over 80% of fish showed an inquisitive response to the moving light stimuli, with the greatest interest in red laser spots. We review the literature on fish play and discuss whether the fish responses we observed can be considered play. It is common to observe play in dogs, cats, and birds, but have we been ignoring play in one of the most common house pets of all horizontal ellipsis fish? Aquarium fish are often used as meditative decoration in family households, but it could be that fish have similarly diverse behavioral repertoires as mammals and birds. To examine this theory, we conducted field tests at local pet stores where a range of aquarium fish species was tested for responsiveness to laser pointer stimuli. Out of 66 species of fish tested, over 80% showed a tendency to be interested in the moving laser spots, particularly red ones. Whether this behavior constitutes play is an active topic of investigation that we examine in this work

    An electrophysiological investigation of power-amplification in the ballistic mantis shrimp punch

    No full text
    Mantis shrimp are aggressive, burrowing crustaceans that hunt using one the fastest movements in the natural world. These stomatopods can crack the calcified shells of prey or spear down unsuspecting fish with lighting speed. Their strike makes use of power-amplification mechanisms to move their limbs much faster than is possible by muscles alone. Other arthropods such as crickets and grasshoppers also use power-amplified kicks that allow these animals to rapidly jump away from predator threats. Here we present a template laboratory exercise for studying the electrophysiology of power-amplified limb movement in arthropods, with a specific focus on mantis shrimp strikes. The exercise is designed in such a way that it can be applied to other species that perform power-amplified limb movements (e.g., house crickets, <i>Acheta domesticus</i>) and species that do not (e.g., cockroaches, <i>Blaberus discoidalis</i>). Students learn to handle the animals, make and implant electromyogram (EMG) probes, and finally perform experiments. This integrative approach introduces the concept of power-amplified neuromuscular control; allows students to develop scientific methods, and conveys high-level insights into behavior, and convergent evolution, the process by which different species evolve similar traits. Our power-amplification laboratory exercise involves a non-terminal preparation which allows electrophysiological recordings across multiple days from arthropods using a low-cost EMG amplifier. Students learn the principles of electrophysiology by fabricating their own electrode system and performing implant surgeries. Students then present behaviorally-relevant stimuli that generate attack strikes in the animals during the electrophysiology experiments to get insight into the underlying mechanisms of power amplification. Analyses of the EMG data (spike train burst duration, firing rate, and spike amplitude) allow students to compare mantis shrimp with other power-amplifying species, as well as a non-power-amplifying one. The major learning goal of this exercise is to empower students by providing an experience to develop their own setup to examine a complex biological principle. By contrasting power-amplifiers with non-power-amplifiers, these analyses highlight the peculiarity of power amplification at multiple levels of analysis, from behavior to physiology. Our comparative design requires students to consider the behavioral function of the movement in different species alongside the neuromuscular underpinnings of each movement. This laboratory exercise allows students to develop methodology, problem-solving and inquisitive skills crucial for pursuing scienc
    corecore