30 research outputs found

    Levosimendan: a cardiovascular drug to prevent liver ischemia-reperfusion injury?

    Get PDF
    INTRODUCTION: Temporary occlusion of the hepatoduodenal ligament leads to an ischemic-reperfusion (IR) injury in the liver. Levosimendan is a new positive inotropic drug, which induces preconditioning-like adaptive mechanisms due to opening of mitochondrial KATP channels. The aim of this study was to examine possible protective effects of levosimendan in a rat model of hepatic IR injury. MATERIAL AND METHODS: Levosimendan was administered to male Wistar rats 1 hour (early pretreatment) or 24 hours (late pretreatment) before induction of 60-minute segmental liver ischemia. Microcirculation of the liver was monitored by laser Doppler flowmeter. After 24 hours of reperfusion, liver and blood samples were taken for histology, immuno- and enzyme-histochemistry (TUNEL; PARP; NADH-TR) as well as for laboratory tests. Furthermore, liver antioxidant status was assessed and HSP72 expression was measured. RESULTS: In both groups pretreated with levosimendan, significantly better hepatic microcirculation was observed compared to respective IR control groups. Similarly, histological damage was also reduced after levosimendan administration. This observation was supported by significantly lower activities of serum ALT (pearly = 0.02; plate = 0.005), AST (pearly = 0.02; plate = 0.004) and less DNA damage by TUNEL test (pearly = 0.05; plate = 0.034) and PAR positivity (pearly = 0.02; plate = 0.04). Levosimendan pretreatment resulted in significant improvement of liver redox homeostasis. Further, significantly better mitochondrial function was detected in animals receiving late pretreatment. Finally, HSP72 expression was increased by IR injury, but it was not affected by levosimendan pretreatment. CONCLUSION: Levosimendan pretreatment can be hepatoprotective and it could be useful before extensive liver resection

    The Roles of the Dystrophin-Associated Glycoprotein Complex at the Synapse

    Full text link

    Data for: Effect of drying on the physical and chemical properties of faecal sludge for its reuse

    No full text
    Spreadsheet with the data treatment for the pape

    Data for: Effect of drying on the physical and chemical properties of faecal sludge for its reuse

    No full text
    Spreadsheet with the data treatment for the paperTHIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Steam gasification of char from wood chips fast pyrolysis: Development of a semi-empirical model for a fluidized bed reactor application

    No full text
    International audienceThis study, performed in the context of GAYA project, focuses on the development of a simple predictive model about steam gasification of char from woodchips fast pyrolysis. A semi-empirical model was developed through experiments in a macro thermogravimetric analyzer which owns the peculiar ability of fast heating, as well as to deal with macro-size particles and higher mass loads compared to conventional TGA. The experimental results show that gasification is controlled by chemical kinetics and internal transfer phenomena. During gasification, char particles can be considered as isothermal in a given range of temperatures and particle sizes, more likely for low values. The gasification model was based on the effectiveness factor, which involves the chemical kinetics and diffusion rate. The chemical kinetics were expressed by a classical Arrhenius law, whereas empirical expressions from mathematical fitting of the experimental data were established for the diffusion coefficient and surface function. The diffusion coefficient from this work is suspected to probably include supplementary rate limiting phenomena, apart from steam porous diffusion, such as H2 inhibition and/or the decrease of temperature within char particles because of the endothermic character of gasification. The model globally predicts with accuracy the gasification rate in typical operating conditions of a fluidized bed reactor. For its simplicity and reliability, this approach can be used for the modelling of char gasification in the conditions of interest

    Characterization of char and soot from millimetric wood particles pyrolysis in a drop tube reactor between 800 degrees C and 1400 degrees C

    No full text
    International audienceChar and soot characterization was performed for samples obtained from beech particles pyrolysis in a drop tube reactor at various temperatures and residence times. Firstly, an experimental study was performed and highlights the variation of char and soot composition and reactivity with operating conditions. A structure ordering with temperature for soot samples was also experimentally put into evidence. These variations are believed to be consequence of structural changes during char thermal annealing and soot formation process, affecting both carbonaceous matrix and mineral matter. Secondly, a semi-empirical model was developed and validated with thermogravimetry experiments. This model was then used for conversion time estimation in conditions representative of an entrained flow reactor, and shows that a complete conversion of char and soot is possible in a few seconds under severe operating conditions

    Faecal sludge pyrolysis: understanding the relationships between organic composition and thermal decomposition

    No full text
    Sludge treatment is an integral part of faecal sludge management in non-sewered sanitation settings. Development of pyrolysis as a suitable sludge treatment method requires thorough knowledge about the properties and thermal decomposition mechanisms of the feedstock. This study aimed to improve the current lack of understanding concerning relevant sludge properties and their influence on the thermal decomposition characteristics. Major organic compounds (hemicellulose, cellulose, lignin, protein, oil and grease, other carbohydrates) were quantified in 30 faecal sludge samples taken from different sanitation technologies, providing the most comprehensive organic faecal sludge data set to date. This information was used to predict the sludge properties crucial to pyrolysis (calorific value, fixed carbon, volatile matter, carbon, hydrogen). Samples were then subjected to thermogravimetric analysis to delineate the influence of organic composition on thermal decomposition. Septic tanks showed lower median fractions of lignin (9.4%dwb) but higher oil and grease (10.7%dwb), compared with ventilated improved pit latrines (17.4%dwb and 4.6%dwb respectively) and urine diverting dry toilets (17.9%dwb and 4.7%dwb respectively). High fixed carbon fractions in lignin (45.1%dwb) and protein (18.8%dwb) suggested their importance for char formation, while oil and grease fully volatilised. For the first time, this study provided mechanistic insights into faecal sludge pyrolysis as a function of temperature and feedstock composition. Classification into the following three phases was proposed: decomposition of hemicellulose, cellulose, other carbohydrates, proteins and, partially, lignin (200–380 °C), continued decomposition of lignin and thermal cracking of oil and grease (380–500 °C) and continued carbonisation (>500 °C). The findings will facilitate the development and optimisation of faecal sludge pyrolysis, emphasising the importance of considering the organic composition of the feedstock

    Drying of faecal sludge from VIP latrines through a medium infrared radiation process

    Get PDF
    In order to treat faecal sludge from ventilated improved pit (VIP) latrines, eThekwini Municipality (Durban, South Africa) developed an infrared dryer, ‘LaDePa’ (Latrine Dehydration Pasteurization). Parameters that influence its operation were investigated using a laboratory-scale replica of the full-scale machine. For this, faecal sludge collected from VIP latrines was pelletized and dried under different operating conditions. Drying curves were obtained by plotting medium wave infrared intensity (MIR), height of emitters above the belt, air flowrate and pellet diameter against the residence time. These curves were then used to determine the drying rate and energy consumption. The results show that the drying rate increased while the energy consumption decreased by increasing the power of the MIR emitters and decreasing the size of the pellets. For example, the drying time to get a moisture content of 0.8 g water/g dry solid was shortened from 27 to 6 min while the energy consumption for this reduced from 1.5 to 0.8 kWh after increasing the MIR power from 1.5 to 3.3 kW. Similar drying curves were obtained by varying the distance between the pellets and MIR emitters, and adjusting intensity of the MIR radiation to obtain the same temperature in the drying zone. It was also observed that higher airflow rates enhanced mass transfer rates, but led to a cooling effect. No effect on the drying rate was observed after pre-drying the sludge or adding sawdust. The study shows that for the process to be efficient, the MIR intensity should be high enough for fast drying to occur (T ≄ 150°C), but without causing thermal degradation (T ≀ 220°C). The height of emitter above the belt and the pellet size should be as small as possible (8 mm); airflow rate should be optimised to maximize the mass transfer rate and minimize the cooling effect
    corecore