3,072 research outputs found

    Forecasting Housing Prices under Different Submarket Assumptions

    Get PDF
    This research evaluated forecasting accuracy of hedonic price models based on a number of different submarket assumptions. Using home sale data for the City of Knoxville and vicinities merged with geographic information, we found that forecasting housing prices with submarkets defined using expert knowledge and by school district and combining information conveyed in different modeling strategies are more accurate and efficient than models that are spatially aggregated, or with submarkets defined by statistical clustering techniques. This finding provided useful implications for housing price prediction in an urban setting and surrounding areas in that forecasting models based on expert knowledge of market structure or public school quality and simple model combining techniques may outperform the models using more sophisticated statistical techniques.Clustering, Forecasting, Hedonic price, Housing Submarket, Demand and Price Analysis, C53, R21,

    Studies on Hypoxia: XI. Long-Term Effects on the Epiphyseal Plate—A Histomeric and Radioautographic Study

    Full text link
    Rats were exposed to hypoxia for one week. The mean thickness of epiphyseal plates from control rats was 430 micrometers (μm) which was reduced to 313 μm in hypoxic rats. Radioautographic incorporation of 3H-phenylalanine by connective tissue cells in hypoxic rats was reduced up to 38% in control rats.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66916/2/10.1177_00220345760550031301.pd

    5D UED: Flat and Flavorless

    Full text link
    5D UED is not automatically minimally flavor violating. This is due to flavor asymmetric counter-terms required on the branes. Additionally, there are likely to be higher dimensional operators which directly contribute to flavor observables. We document a mostly unsuccessful attempt at utilizing localization in a flat extra dimension to resolve these flavor constraints while maintaining KK-parity as a good quantum number. It is unsuccessful insofar as we seem to be forced to add brane operators in such a way as to precisely mimic the effects of a double throat warped extra dimension. In the course of our efforts, we encounter and present solutions to a problem common to many extra dimensional models in which fields are "doubly localized:" ultra-light modes. Under scrutiny, this issue seems tied to an intrinsic tension between maintaining Kaluza-Klein parity and resolving mass hierarchies via localization.Comment: 27 pages, 6 figure

    The η − µ / Inverse Gamma Composite Fading Model

    Get PDF
    © 2015 IEEE. In this paper we propose a new composite fading model which assumes that the mean signal power of an η - μ signal envelope follows an inverse gamma distribution. The inverse gamma distribution has a simple relationship with the gamma distribution and can be used to model shadowed fading due to its semi heavy-tailed characteristics. To demonstrate the utility of the new η - μ / inverse gamma composite fading model, we investigate the characteristics of the shadowed fading behavior observed in body centric communications channels which are known to be susceptible to shadowing effects, particularly generated by the human body. It is shown that the η - μ / inverse gamma composite fading model provided an excellent fit to the measurement data. Moreover, using Kullback-Leibler divergence, the η - μ / inverse gamma composite fading model was found to provide a better fit to the measured data than the k - μ / inverse gamma composite fading model, for the communication scenarios considered here

    Nearest pattern interaction and global pattern formation

    Full text link
    We studied the effect of nearest pattern interaction on a globally pattern formation in a 2-dimensional space, where patterns are to grow initially from a noise in the presence of periodic supply of energy. Although our approach is general, we found that this study is relevant in particular to the pattern formation on a periodically vibrated granular layer, as it gives a unified perspective of the experimentally observed pattern dynamics such as oscillon and stripe formations, skew-varicose and crossroll instabilities, and also a kink formation and decoration

    Entropy and Energy Detection-based Spectrum Sensing over F Composite Fading Channels

    Get PDF
    In this paper, we investigate the performance of energy detection-based spectrum sensing over F composite fading channels. To this end, an analytical expression for the average detection probability is firstly derived. This expression is then extended to account for collaborative spectrum sensing, square-law selection diversity reception and noise power uncertainty. The corresponding receiver operating characteristics (ROC) are analyzed for different conditions of the average signal-to-noise ratio (SNR), noise power uncertainty, time-bandwidth product, multipath fading, shadowing, number of diversity branches and number of collaborating users. It is shown that the energy detection performance is sensitive to the severity of the multipath fading and amount of shadowing, whereby even small variations in either of these physical phenomena can significantly impact the detection probability. As a figure of merit to evaluate the detection performance, the area under the ROC curve (AUC) is derived and evaluated for different multipath fading and shadowing conditions. Closed-form expressions for the Shannon entropy and cross entropy are also formulated and assessed for different average SNR, multipath fading and shadowing conditions. Then the relationship between the Shannon entropy and ROC/AUC is examined where it is found that the average number of bits required for encoding a signal becomes small (i.e., low Shannon entropy) when the detection probability is high or when the AUC is large. The difference between composite and traditional small-scale fading is emphasized by comparing the cross entropy for Rayleigh and Nakagami-m fading. A validation of the analytical results is provided through a careful comparison with the results of some simulations.Comment: 30 pages, 11 figures, 1 table, Submitted to IEEE TCO

    Probing Z' gauge boson with the spin configuration of top quark pair production at future e−e+e^- e^+ linear colliders

    Get PDF
    We explore the effects of extra neutral gauge boson involved in the supersymmetric E6 model on the spin configuration of the top quark pair produced at the polarized e- e+ collider. Generic mixing terms are considered including kinetic mixing terms as well as mass mixing. In the off-diagonal spin basis of the standard model, we show that the cross sections for the suppressed spin configurations can be enhanced with the effects of the Z' boson through the modification of the spin configuration of produced top quark pair enough to be measured in the Linear Colliders, which provides the way to observe the effects of Z' boson and discriminate the pattern of gauge group decomposition. It is pointed out that the kinetic mixing may dilute the effects of mass mixing terms, and we have to perform the combined analysis.Comment: 19 pages including 5 figures, ReVTe
    • …
    corecore