1,457 research outputs found

    Changes in neuropsychological functioning following temporal lobectomy in patients with temporal lobe epilepsy

    Get PDF
    Purpose: This study was conducted to evaluate the changes in neuropsychological functioning in patients with temporal lobe epilepsy (TLE) after temporal lobe resection. Methods: Fifty-four TLE patients were evaluated before and after surgery using comprehensive neuropsychological tests to assess general intelligence, executive functioning, language, verbal and visual memory, working memory, visuo-spatial ability, attention and motor function. Results: The patients with left TLE showed no impairment of neuropsychological functioning after surgery, with the exception of auditory immediate memory. Furthermore, they showed significant improvement in performance IQ, executive function, working memory, visual memory, attention and psychomotor speed. The patients with right TLE did not show any significant impairment in post-operative neuropsychological functioning. They showed improvements in intellectual and executive functions, language, visual memory, visuo-spatial ability, attention and motor function post-operatively. The patients with hippocampal sclerosis showed greater post-operative improvements than the patients without hippocampal sclerosis regardless of the side. Patients with better pre-operative neuropsychological function had a higher chance of successfully discontinuing all seizure medications after surgery. Discussion: The results of this study suggest that temporal lobectomy does not harm the neuropsychological functioning of patients with intractable TLE and that it improves cognitive functions of the contralateral hemisphere. © 2009 W. S. Maney & Son Ltd

    Co-production of hydrogen and ethanol from glucose in Escherichia coli by activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase (pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf) and 6-phosphogluconate dehydrogenase (gnd)

    Get PDF
    Background: Biologically, hydrogen (H-2) can be produced through dark fermentation and photofermentation. Dark fermentation is fast in rate and simple in reactor design, but H-2 production yield is unsatisfactorily low as < 4 mol H-2/ mol glucose. To address this challenge, simultaneous production of H-2 and ethanol has been suggested. Co-production of ethanol andH(2) requires enhanced formation of NAD(P) H during catabolism of glucose, which can be accomplished by diversion of glycolytic flux from the Embden-Meyerh-of-Parnas (EMP) pathway to the pentose-phosphate (PP) pathway in Escherichia coli. However, the disruption of pgi (phosphoglucose isomerase) for complete diversion of carbon flux to the PP pathway made E. coli unable to grow on glucose under anaerobic condition. Results: Here, we demonstrate that, when glucose-6-phosphate dehydrogenase (Zwf) and 6-phosphogluconate dehydrogenase (Gnd), two major enzymes of the PP pathway, are homologously overexpressed, E. coli.pgi can recover its anaerobic growth capability on glucose. Further, with additional deletions of Delta hycA,Delta hyaAB,Delta hybBC,Delta ldhA, and Delta frdAB, the recombinant.pgi mutant could produce 1.69 mol H-2 and 1.50 mol ethanol from 1 mol glucose. However, acetate was produced at 0.18 mol mol(-1) glucose, indicating that some carbon is metabolized through the Entner-Doudoroff (ED) pathway. To further improve the flux via the PP pathway, heterologous zwf and gnd from Leuconostoc mesenteroides and Gluconobacter oxydans, respectively, which are less inhibited by NADPH, were overexpressed. The new recombinant produced more ethanol at 1.62 mol mol(-1) glucose along with 1.74 mol H-2 mol(-1) glucose, which are close to the theoretically maximal yields, 1.67 mol mol(-1) each for ethanol andH(2). However, the attempt to delete the ED pathway in the.pgi mutant to operate the PP pathway as the sole glycolytic route, was unsuccessful. Conclusions: By deletion of pgi and overexpression of heterologous zwf and gnd in E. coli Delta hycA Delta hyaAB Delta hybBC Delta ldhA Delta frdAB, two important biofuels, ethanol andH(2), could be successfully co-produced at high yields close to their theoretical maximums. The strains developed in this study should be applicable for the production of other biofuels and biochemicals, which requires supply of excessive reducing power under anaerobic conditions

    Core-shell nanoparticle arrays double the strength of steel

    Get PDF
    Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material&apos;s strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties. ?The Author(s) 2017.1116Ysciescopu

    Improving signal-to-noise resolution in single molecule experiments using molecular constructs with short handles

    Get PDF
    We investigate unfolding/folding force kinetics in DNA hairpins exhibiting two and three states with newly designed short dsDNA handles (29 bp) using optical tweezers. We show how the higher stiffness of the molecular setup moderately enhances the signal-to-noise ratio (SNR) in hopping experiments as compared to conventional long handles constructs (approximately 700 bp). The shorter construct results in a signal of higher SNR and slower folding/unfolding kinetics, thereby facilitating the detection of otherwise fast structural transitions. A novel analysis of the elastic properties of the molecular setup, based on high-bandwidth measurements of force fluctuations along the folded branch, reveals that the highest SNR that can be achieved with short handles is potentially limited by the marked reduction of the effective persistence length and stretch modulus of the short linker complex.Comment: Main paper: 20 pages and 6 figures. Supplementary Material: 25 page

    The effect of layer number and substrate on the stability of graphene under MeV proton beam irradiation

    Full text link
    The use of graphene electronics in space will depend on the radiation hardness of graphene. The damage threshold of graphene samples, subjected to 2 MeV proton irradiation, was found to increase with layer number and also when the graphene layer was supported by a substrate. The thermal properties of graphene as a function of the number of layers or as influenced by the substrate argue against a thermal model for the production of damage by the ion beam. We propose a model of intense electronically-stimulated surface desorption of the atoms as the most likely process for this damage mechanism.Comment: 20 pages, 5 figure

    New insights into electron spin dynamics in the presence of correlated noise

    Full text link
    The changes of the spin depolarization length in zinc-blende semiconductors when an external component of correlated noise is added to a static driving electric field are analyzed for different values of field strength, noise amplitude and correlation time. Electron dynamics is simulated by a Monte Carlo procedure which keeps into account all the possible scattering phenomena of the hot electrons in the medium and includes the evolution of spin polarization. Spin depolarization is studied by examinating the decay of the initial spin polarization of the conduction electrons through the D'yakonov-Perel process, the only relevant relaxation mechanism in III-V crystals. Our results show that, for electric field amplitude lower than the Gunn field, the dephasing length shortens with the increasing of the noise intensity. Moreover, a nonmonotonic behavior of spin depolarization length with the noise correlation time is found, characterized by a maximum variation for values of noise correlation time comparable with the dephasing time. Instead, in high field conditions, we find that, critically depending on the noise correlation time, external fluctuations can positively affect the relaxation length. The influence of the inclusion of the electron-electron scattering mechanism is also shown and discussed.Comment: Published on "Journal of Physics: Condensed Matter" as "Fast Track Communications", 11 pages, 9 figure

    Screening of suitable cationic dopants for solar absorber material CZTS/Se: A first principles study

    Get PDF
    The earth abundant and non-toxic solar absorber material kesterite Cu2ZnSn(S/Se)(4) has been studied to achieve high power conversion efficiency beyond various limitations, such as secondary phases, antisite defects, band gap adjustment and microstructure. To alleviate these hurdles, we employed screening based approach to find suitable cationic dopant that can promote the current density and the theoretical maximum upper limit of the energy conversion efficiency (P(%)) of CZTS/Se solar devices. For this task, the hybrid functional (Heyd, Scuseria and Ernzerhof, HSE06) were used to study the electronic and optical properties of cation (Al, Sb, Ga, Ba) doped CZTS/Se. Our in-depth investigation reveals that the Sb atom is suitable dopant of CZTS/CZTSe and also it has comparable bulk modulus as of pure material. The optical absorption coefficient of Sb doped CZTS/Se is considerably larger than the pure materials because of easy formation of visible range exciton due to the presence of defect state below the Fermi level, which leads to an increase in the current density and P(%). Our results demonstrate that the lower formation energy, preferable energy gap and excellent optical absorption of the Sb doped CZTS/Se make it potential component for relatively high efficient solar cells

    Analysis of and workarounds for element reversal for a finite element-based algorithm for warping triangular and tetrahedral meshes

    Full text link
    We consider an algorithm called FEMWARP for warping triangular and tetrahedral finite element meshes that computes the warping using the finite element method itself. The algorithm takes as input a two- or three-dimensional domain defined by a boundary mesh (segments in one dimension or triangles in two dimensions) that has a volume mesh (triangles in two dimensions or tetrahedra in three dimensions) in its interior. It also takes as input a prescribed movement of the boundary mesh. It computes as output updated positions of the vertices of the volume mesh. The first step of the algorithm is to determine from the initial mesh a set of local weights for each interior vertex that describes each interior vertex in terms of the positions of its neighbors. These weights are computed using a finite element stiffness matrix. After a boundary transformation is applied, a linear system of equations based upon the weights is solved to determine the final positions of the interior vertices. The FEMWARP algorithm has been considered in the previous literature (e.g., in a 2001 paper by Baker). FEMWARP has been succesful in computing deformed meshes for certain applications. However, sometimes FEMWARP reverses elements; this is our main concern in this paper. We analyze the causes for this undesirable behavior and propose several techniques to make the method more robust against reversals. The most successful of the proposed methods includes combining FEMWARP with an optimization-based untangler.Comment: Revision of earlier version of paper. Submitted for publication in BIT Numerical Mathematics on 27 April 2010. Accepted for publication on 7 September 2010. Published online on 9 October 2010. The final publication is available at http://www.springerlink.co
    corecore