86 research outputs found
MADAP, a flexible clustering tool for the interpretation of one-dimensional genome annotation data
A recurring task in the analysis of mass genome annotation data from high-throughput technologies is the identification of peaks or clusters in a noisy signal profile. Examples of such applications are the definition of promoters on the basis of transcription start site profiles, the mapping of transcription factor binding sites based on ChIP-chip data and the identification of quantitative trait loci (QTL) from whole genome SNP profiles. Input to such an analysis is a set of genome coordinates associated with counts or intensities. The output consists of a discrete number of peaks with respective volumes, extensions and center positions. We have developed for this purpose a flexible one-dimensional clustering tool, called MADAP, which we make available as a web server and as standalone program. A set of parameters enables the user to customize the procedure to a specific problem. The web server, which returns results in textual and graphical form, is useful for small to medium-scale applications, as well as for evaluation and parameter tuning in view of large-scale applications, requiring a local installation. The program written in C++ can be freely downloaded from ftp://ftp.epd.unil.ch/pub/software/unix/madap. The MADAP web server can be accessed at http://www.isrec.isb-sib.ch/madap/
FOXQ1, a Novel Target of the Wnt Pathway and a New Marker for Activation of Wnt Signaling in Solid Tumors
Background: The forkhead box transcription factor FOXQ1 has been shown to be upregulated in colorectal cancer (CRC) and metastatic breast cancer and involved in tumor development, epithelial-mesenchymal transition and chemoresistance. Yet, its transcriptional regulation is still unknown. Methods: FOXQ1 mRNA and protein expression were analysed in a panel of CRC cell lines, and laser micro-dissected human biopsy samples by qRT-PCR, microarray GeneChip (R) U133 Plus 2.0 and western blots. FOXQ1 regulation was assayed by chromatin immunoprecipitation and luciferase reporter assays. Results: FOXQ1 was robustly induced in CRC compared to other tumors, but had no predictive value with regards to grade, metastasis and survival in CRC. Prototype-based gene coexpression and gene set enrichment analysis showed a significant association between FOXQ1 and the Wnt pathway in tumors and cancer cell lines from different tissues. In vitro experiments confirmed, on a molecular level, FOXQ1 as a direct Wnt target. Analysis of known Wnt targets identified FOXQ1 as the most suitable marker for canonical Wnt activation across a wide panel of cell lines derived from different tissues. Conclusions: Our data show that FOXQ1 is one of the most over-expressed genes in CRC and a direct target of the canonical Wnt pathway. It is a potential new marker for detection of early CRC and Wnt activation in tumors of different origins
Changes in the transcriptional profile of transporters in the intestine along the anterior-posterior and crypt-villus axes
BACKGROUND: The purpose of this work was to characterize the expression of drug and nutrient carriers along the anterior-posterior and crypt-villus axes of the intestinal epithelium and to study the validity of utilizing whole gut tissue rather than purified epithelial cells to examine regional variations in gene expression. RESULTS: We have characterized the mRNA expression profiles of 76 % of all currently known transporters along the anterior-posterior axis of the gut. This is the first study to describe the expression profiles of the majority of all known transporters in the intestine. The expression profiles of transporters, as defined according to the Gene Ontology consortium, were measured in whole tissue of the murine duodenum, jejunum, ileum and colon using high-density microarrays. For nine transporters (Abca1, Abcc1, Abcc3, Abcg8, Slc10a2, Slc28a2, Slc2a1, Slc34a2 and Slc5a8), the mRNA profiles were further measured by RT-PCR in laser micro-dissected crypt and villus epithelial cells corresponding to the aforementioned intestinal regions. With respect to differentially regulated transporters, the colon had a distinct expression profile from small intestinal segments. The majority (59 % for p cutoff †0.05) of transporter mRNA levels were constant across the intestinal sections studied. For the transporter subclass "carrier activity", which contains the majority of known carriers for biologically active compounds, a significant change (p †0.05) along the anterior-posterior axis was observed. CONCLUSION: All nine transporters examined in laser-dissected material demonstrated good replication of the region-specific profiles revealed by microarray. Furthermore, we suggest that the distribution characteristics of Slc5a8 along the intestinal tract render it a suitable candidate carrier for monocarboxylate drugs in the posterior portion of the intestine. Our findings also predict that there is a significant difference in the absorption of carrier-mediated compounds in the different intestinal segments. The most pronounced differences can be expected between the adjoining segments ileum and colon, but the differences between the other adjoining segments are not negligible. Finally, for the examined genes, profiles measured in whole intestinal tissue extracts are representative of epithelial cell-only gene expression
ACGT: advancing clinico-genomic trials on cancer - four years of experience.
The challenges regarding seamless integration of distributed, heterogeneous and multilevel data arising in the context of contemporary, post-genomic clinical trials cannot be effectively addressed with current methodologies. An urgent need exists to access data in a uniform manner, to share information among different clinical and research centers, and to store data in secure repositories assuring the privacy of patients. Advancing Clinico-Genomic Trials (ACGT) was a European Commission funded Integrated Project that aimed at providing tools and methods to enhance the efficiency of clinical trials in the -omics era. The project, now completed after four years of work, involved the development of both a set of methodological approaches as well as tools and services and its testing in the context of real-world clinico-genomic scenarios. This paper describes the main experiences using the ACGT platform and its tools within one such scenario and highlights the very promising results obtained
Exhaustive search for epistatic effects on the human methylome
Studies assessing the existence and magnitude of epistatic effects on complex human traits provide inconclusive results. The study of such effects is complicated by considerable increase in computational burden, model complexity, and model uncertainty, which in concert decrease model stability. An additional source introducing significant uncertainty with regard to the detection of robust epistasis is the biological distance between the genetic variation and the trait under study. Here we studied CpG methylation, a genetically complex molecular trait that is particularly close to genomic variation, and performed an exhaustive search for two-locus epistatic effects on the CpG-methylation signal in two cohorts of healthy young subjects. We detected robust epistatic effects for a small number of CpGs (Nâ=â404). Our results indicate that epistatic effects explain only a minor part of variation in DNA-CpG methylation. Interestingly, these CpGs were more likely to be associated with gene-expression of nearby genes, as also shown by their overrepresentation in DNase I hypersensitivity sites and underrepresentation in CpG islands. Finally, gene ontology analysis showed a significant enrichment of these CpGs in pathways related to HPV-infection and cancer
Sensing the (digital) pulse. Future steps for improving the secondary use of data for research in Switzerland.
INTRODUCTION
Ensuring that the health data infrastructure and governance permits an efficient secondary use of data for research is a policy priority for many countries. Switzerland is no exception and many initiatives have been launched to improve its health data landscape. The country now stands at an important crossroad, debating the right way forward. We aimed to explore which specific elements of data governance can facilitate - from ethico-legal and socio-cultural perspectives - the sharing and reuse of data for research purposes in Switzerland.
METHODS
A modified Delphi methodology was used to collect and structure input from a panel of experts via successive rounds of mediated interaction on the topic of health data governance in Switzerland.
RESULTS
First, we suggested techniques to facilitate data sharing practices, especially when data are shared between researchers or from healthcare institutions to researchers. Second, we identified ways to improve the interaction between data protection law and the reuse of data for research, and the ways of implementing informed consent in this context. Third, we put forth ideas on policy changes, such as the steps necessary to improve coordination between different actors of the data landscape and to win the defensive and risk-adverse attitudes widespread when it comes to health data.
CONCLUSIONS
After having engaged with these topics, we highlighted the importance of focusing on non-technical aspects to improve the data-readiness of a country (e.g., attitudes of stakeholders involved) and of having a pro-active debate between the different institutional actors, ethico-legal experts and society at large
Regional and cellular gene expression changes in human Huntington's disease brain
Huntington's disease (HD) pathology is well understood at a histological level but a comprehensive molecular analysis of the effect of the disease in the human brain has not previously been available. To elucidate the molecular phenotype of HD on a genome-wide scale, we compared mRNA profiles from 44 human HD brains with those from 36 unaffected controls using microarray analysis. Four brain regions were analyzed: caudate nucleus, cerebellum, prefrontal association cortex [Brodmann's area 9 (BA9)] and motor cortex [Brodmann's area 4 (BA4)]. The greatest number and magnitude of differentially expressed mRNAs were detected in the caudate nucleus, followed by motor cortex, then cerebellum. Thus, the molecular phenotype of HD generally parallels established neuropathology. Surprisingly, no mRNA changes were detected in prefrontal association cortex, thereby revealing subtleties of pathology not previously disclosed by histological methods. To establish that the observed changes were not simply the result of cell loss, we examined mRNA levels in laser-capture microdissected neurons from Grade 1 HD caudate compared to control. These analyses confirmed changes in expression seen in tissue homogenates; we thus conclude that mRNA changes are not attributable to cell loss alone. These data from bona fide HD brains comprise an important reference for hypotheses related to HD and other neurodegenerative disease
Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage
To test the hypotheses that mutant huntingtin protein length and wild-type huntingtin dosage have important effects on disease-related transcriptional dysfunction, we compared the changes in mRNA in seven genetic mouse models of Huntington's disease (HD) and postmortem human HD caudate. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in and full-length transgenic models of HD took longer to appear, 15- and 22-month CHL2Q150/Q150, 18-month HdhQ92/Q92 and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. Whereas it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared with those caused by the expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. In addition, very high correlations between the signatures of mice expressing normal levels of wild-type huntingtin and mice in which the wild-type protein is absent suggest a limited effect of the wild-type protein to change basal gene expression or to influence the qualitative disease-related effect of mutant huntingtin. The combined analysis of mouse and human HD transcriptomes provides important temporal and mechanistic insights into the process by which mutant huntingtin kills striatal neurons. In addition, the discovery that several available lines of HD mice faithfully recapitulate the gene expression signature of the human disorder provides a novel aspect of validation with respect to their use in preclinical therapeutic trial
Defining new criteria for selection of cell-based intestinal models using publicly available databases
Peer reviewe
- âŠ