499 research outputs found
Terahertz quantum cascade laser as local oscillator in a heterodyne receiver
Terahertz quantum cascade lasers have been investigated with respect to their performance as a local oscillator in a heterodyne receiver. The beam profile has been measured and transformed in to a close to Gaussian profile resulting in a good matching between the field patterns of the quantum cascade laser and the antenna of a superconducting hot electron bolometric mixer. Noise temperature measurements with the hot electron bolometer and a 2.5 THz quantum cascade laser yielded the same result as with a gas laser as local oscillator. (C) 2005 Optical Society of America
Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations
Temperature and precipitation extremes and their potential future changes are evaluated in an ensemble of global coupled climate models participating in the Intergovernmental Panel on Climate Change (IPCC) diagnostic exercise for the Fourth Assessment Report (AR4). Climate extremes are expressed in terms of 20-yr return values of annual extremes of near-surface temperature and 24-h precipitation amounts. The simulated changes in extremes are documented for years 2046–65 and 2081–2100 relative to 1981–2000 in experiments with the Special Report on Emissions Scenarios (SRES) B1, A1B, and A2 emission scenarios. Overall, the climate models simulate present-day warm extremes reasonably well on the global scale, as compared to estimates from reanalyses. The model discrepancies in simulating cold extremes are generally larger than those for warm extremes, especially in sea ice–covered areas. Simulated present-day precipita-tion extremes are plausible in the extratropics, but uncertainties in extreme precipitation in the Tropics are very large, both in the models and the available observationally based datasets. Changes in warm extremes generally follow changes in the mean summertime temperature. Cold ex-tremes warm faster than warm extremes by about 30%–40%, globally averaged. The excessive warming of cold extremes is generally confined to regions where snow and sea ice retreat with global warming. With th
Ultra-Sensitive Hot-Electron Nanobolometers for Terahertz Astrophysics
The background-limited spectral imaging of the early Universe requires
spaceborne terahertz (THz) detectors with the sensitivity 2-3 orders of
magnitude better than that of the state-of-the-art bolometers. To realize this
sensitivity without sacrificing operating speed, novel detector designs should
combine an ultrasmall heat capacity of a sensor with its unique thermal
isolation. Quantum effects in thermal transport at nanoscale put strong
limitations on the further improvement of traditional membrane-supported
bolometers. Here we demonstrate an innovative approach by developing
superconducting hot-electron nanobolometers in which the electrons are cooled
only due to a weak electron-phonon interaction. At T<0.1K, the electron-phonon
thermal conductance in these nanodevices becomes less than one percent of the
quantum of thermal conductance. The hot-electron nanobolometers, sufficiently
sensitive for registering single THz photons, are very promising for
submillimeter astronomy and other applications based on quantum calorimetry and
photon counting.Comment: 19 pages, 3 color figure
Superconducting nanowire photon number resolving detector at telecom wavelength
The optical-to-electrical conversion, which is the basis of optical
detectors, can be linear or nonlinear. When high sensitivities are needed
single-photon detectors (SPDs) are used, which operate in a strongly nonlinear
mode, their response being independent of the photon number. Nevertheless,
photon-number resolving (PNR) detectors are needed, particularly in quantum
optics, where n-photon states are routinely produced. In quantum communication,
the PNR functionality is key to many protocols for establishing, swapping and
measuring entanglement, and can be used to detect photon-number-splitting
attacks. A linear detector with single-photon sensitivity can also be used for
measuring a temporal waveform at extremely low light levels, e.g. in
long-distance optical communications, fluorescence spectroscopy, optical
time-domain reflectometry. We demonstrate here a PNR detector based on parallel
superconducting nanowires and capable of counting up to 4 photons at
telecommunication wavelengths, with ultralow dark count rate and high counting
frequency
First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector
The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ
Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC
We present the first results of meson production in the K^+K^- decay channel
from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by
the PHENIX detector at RHIC. Precision resonance centroid and width values are
extracted as a function of collision centrality. No significant variation from
the PDG accepted values is observed. The transverse mass spectra are fitted
with a linear exponential function for which the derived inverse slope
parameter is seen to be constant as a function of centrality. These data are
also fitted by a hydrodynamic model with the result that the freeze-out
temperature and the expansion velocity values are consistent with the values
previously derived from fitting single hadron inclusive data. As a function of
transverse momentum the collisions scaled peripheral.to.central yield ratio RCP
for the is comparable to that of pions rather than that of protons. This result
lends support to theoretical models which distinguish between baryons and
mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be
submitted to Physical Review C as a regular article. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Measurement of the B0 anti-B0 oscillation frequency using l- D*+ pairs and lepton flavor tags
The oscillation frequency Delta-md of B0 anti-B0 mixing is measured using the
partially reconstructed semileptonic decay anti-B0 -> l- nubar D*+ X. The data
sample was collected with the CDF detector at the Fermilab Tevatron collider
during 1992 - 1995 by triggering on the existence of two lepton candidates in
an event, and corresponds to about 110 pb-1 of pbar p collisions at sqrt(s) =
1.8 TeV. We estimate the proper decay time of the anti-B0 meson from the
measured decay length and reconstructed momentum of the l- D*+ system. The
charge of the lepton in the final state identifies the flavor of the anti-B0
meson at its decay. The second lepton in the event is used to infer the flavor
of the anti-B0 meson at production. We measure the oscillation frequency to be
Delta-md = 0.516 +/- 0.099 +0.029 -0.035 ps-1, where the first uncertainty is
statistical and the second is systematic.Comment: 30 pages, 7 figures. Submitted to Physical Review
Search for New Particles Decaying to top-antitop in proton-antiproton collisions at squareroot(s)=1.8 TeV
We use 106 \ipb of data collected with the Collider Detector at Fermilab to
search for narrow-width, vector particles decaying to a top and an anti-top
quark. Model independent upper limits on the cross section for narrow, vector
resonances decaying to \ttbar are presented. At the 95% confidence level, we
exclude the existence of a leptophobic \zpr boson in a model of
topcolor-assisted technicolor with mass M_{\zpr} 480 \gev for natural
width = 0.012 M_{\zpr}, and M_{\zpr} 780 \gev for =
0.04 M_{\zpr}.Comment: The CDF Collaboration, submitted to PRL 25-Feb-200
A global analysis of the comparability of winter chill models for fruit and nut trees
Many fruit and nut trees must fulfill a chilling requirement to break their winter dormancy and resume normal growth in spring. Several models exist for quantifying winter chill, and growers and researchers often tacitly assume that the choice of model is not important and estimates of species chilling requirements are valid across growing regions. To test this assumption, Safe Winter Chill (the amount of winter chill that is exceeded in 90% of years) was calculated for 5,078 weather stations around the world, using the Dynamic Model [in Chill Portions (CP)], the Chilling Hours (CH) Model and the Utah Model [Utah Chill Units (UCU)]. Distributions of the ratios between different winter chill metrics were mapped on a global scale. These ratios should be constant if the models were strictly proportional. Ratios between winter chill metrics varied substantially, with the CH/CP ratio ranging between 0 and 34, the UCU/CP ratio between −155 and +20 and the UCU/CH ratio between −10 and +5. The models are thus not proportional, and chilling requirements determined in a given location may not be valid elsewhere. The Utah Model produced negative winter chill totals in many Subtropical regions, where it does not seem to be useful. Mean annual temperature and daily temperature range influenced all winter chill ratios, but explained only between 12 and 27% of the variation. Data on chilling requirements should always be amended with information on the location and experimental conditions of the study in which they were determined, ideally including site-specific conversion factors between winter chill models. This would greatly facilitate the transfer of such information across growing regions, and help prepare growers for the impact of climate change
Double Diffraction Dissociation at the Fermilab Tevatron Collider
We present results from a measurement of double diffraction dissociation in
collisions at the Fermilab Tevatron collider. The production cross
section for events with a central pseudorapidity gap of width
(overlapping ) is found to be [] at [630]
GeV. Our results are compared with previous measurements and with predictions
based on Regge theory and factorization.Comment: 10 pages, 4 figures, using RevTeX. Submitted to Physical Review
Letter
- …