415 research outputs found
Оценка рентгенометрических показателей костей предплечья при травматической нестабильности дистального лучелоктевого сустава у детей
Background. At present, the literature describes in sufficient detail the use of various methods of X-ray examination of the bones of the forearm in the diagnosis of distal radioulnar joint instability (DRUJI), but there are no data on radiometric parameters for DRUJI of traumatic origin in children. Quantitative diagnostics becomes mandatory for determining the tactics of treating DRUJI of traumatic origin in children.
The purpose of study to analyze the radiometric parameters of the distal forearm in case of DRUJI of traumatic origin in children to plan the method of surgical treatment.
Мethods. The paper presents an analysis of the results of X-ray examination of 23 children with instability of the distal radioulnar joint of traumatic origin aged 9 to 17 years (mean age 14.212.5 years) the main group. For comparison, radiographs of the contralateral forearms of the same patients were analyzed the comparison group (23 children), and radiographs of the forearm of 69 pediatric patients without signs of DRUJI (control group). On radiographs in the anteroposterior and lateral projections, the following radiometric parameters were evaluated: radioulnar and volar angles, radioulnar index, radioulnar distance, and the difference between the radioulnar distances of both forearms.
Results. In 19 patients of the main group, a positive variant of the radioulnar index with dislocation of the head of the ulna was revealed, while the indicators of the radioulnar and volar angle were characterized by variability in values. The average values of radiometric parameters of DRUJI in children without bone-traumatic changes of the forearm are comparable to normal values in adults.
Conclusions. In children with DRUJI of traumatic origin, various changes were revealed radiometric indicators of the distal parts of the bones of the forearm, which depend on the type of forearm fracture. In a particular pediatric patient with DRUJI of traumatic origin, these indicators reflect the biomechanical features of the wrist joint, which must be taken into account when planning surgical intervention and predicting the recovery of the anatomy and function of the forearm.Актуальность. В настоящее время в литературе достаточно подробно описано применение различных методик рентгенологического исследования костей предплечья при диагностике нестабильности дистального лучелоктевого сустава (ДЛЛС), но отсутствуют сведения о рентгенометрических показателях при нестабильности ДЛЛС травматического генеза у детей. Квантитативная диагностика приобретает обязательный характер для определения тактики лечения нестабильности ДЛЛС травматического генеза у детей.
Цель исследования проанализировать рентгенометрические показатели дистальных отделов костей предплечья при нестабильности ДЛЛС травматического генеза у детей для планирования хирургического лечения.
Материал и методы. В работе представлен анализ результатов рентгенологического исследования 23 детей с нестабильностью ДЛЛС травматического генеза в возрасте от 9 до 17 лет (средний возраст 14,22,5 года) основная группа. Для сравнения анализировали рентгенограммы контралатеральных предплечий этих же пациентов группа сравнения (23 ребенка) и рентгенограммы костей предплечья 69 пациентов детского возраста без признаков нестабильности ДЛЛС (контрольная группа). На рентгенограммах в переднезадней и боковой проекциях оценивали следующие рентгенометрические показатели: лучелоктевой и волярный углы, лучелоктевой индекс, радиоульнарное расстояние и разницу между радиоульнарными расстояниями обоих предплечий.
Результаты. У 19 пациентов с нестабильностью ДЛЛС травматического генеза был выявлен положительный вариант лучелоктевого индекса с вывихом головки локтевой кости, в то время как показатели лучелоктевого и волярного угла характеризовались вариабельностью значений. Средние рентгенометрические параметры ДЛЛС у детей без костно-травматических изменений костей предплечья сопоставимы с нормальными значениями у взрослых.
Заключение. У детей с нестабильностью ДЛЛС травматического генеза выявлены различные изменения рентгенометрических показателей дистальных отделов костей предплечья, которые зависят от типа перелома. У конкретного пациента детского возраста с нестабильностью ДЛЛС травматического генеза эти показатели отражают биомеханические особенности кистевого сустава, что необходимо учитывать при планировании хирургического вмешательства и прогнозировании восстановления анатомии и функции предплечья
Weak localization, Aharonov–Bohm oscillations and decoherence in arrays of quantum dots
Combining scattering matrix theory with non-linear σ-model and Keldysh technique we develop a unified theoretical approach enabling one to non-perturbatively study the effect of electron–electron interactions on weak localization and Aharonov–Bohm oscillations in arbitrary arrays of quantum dots. Our model embraces weakly disordered conductors, strongly disordered conductors and (iii) metallic quantum dots. In all these cases at T→0 the electron decoherence time is found to saturate to a finite value determined by the universal formula which agrees quantitatively with numerous experimental results. Our analysis provides overwhelming evidence in favor of electron–electron interactions as a universal mechanism for zero temperature electron decoherence in disordered conductors
Confinement and soliton solutions in the SL(3) Toda model coupled to matter fields
We consider an integrable conformally invariant two dimensional model
associated to the affine Kac-Moody algebra SL(3). It possesses four scalar
fields and six Dirac spinors. The theory does not possesses a local Lagrangian
since the spinor equations of motion present interaction terms which are
bilinear in the spinors. There exists a submodel presenting an equivalence
between a U(1) vector current and a topological current, which leads to a
confinement of the spinors inside the solitons. We calculate the one-soliton
and two-soliton solutions using a procedure which is a hybrid of the dressing
and Hirota methods. The soliton masses and time delays due to the soliton
interactions are also calculated. We give a computer program to calculate the
soliton solutions.Comment: plain LaTeX, 37 page
Dual Isomonodromic Deformations and Moment Maps to Loop Algebras
The Hamiltonian structure of the monodromy preserving deformation equations
of Jimbo {\it et al } is explained in terms of parameter dependent pairs of
moment maps from a symplectic vector space to the dual spaces of two different
loop algebras. The nonautonomous Hamiltonian systems generating the
deformations are obtained by pulling back spectral invariants on Poisson
subspaces consisting of elements that are rational in the loop parameter and
identifying the deformation parameters with those determining the moment maps.
This construction is shown to lead to ``dual'' pairs of matrix differential
operators whose monodromy is preserved under the same family of deformations.
As illustrative examples, involving discrete and continuous reductions, a
higher rank generalization of the Hamiltonian equations governing the
correlation functions for an impenetrable Bose gas is obtained, as well as dual
pairs of isomonodromy representations for the equations of the Painleve
transcendents and .Comment: preprint CRM-1844 (1993), 28 pgs. (Corrected date and abstract.
Oil pollution in the southeastern Baltic Sea by satellite remote sensing data in 2004-2015
The results of satellite monitoring of oil pollution in the Southeastern Baltic Sea in 2004-2015 are discussed in the paper. Interannual and seasonal variability of oil pollution is investigated. A steady decrease in total oil pollution was observed from 2004 to 2011. After a sharp increase of oil pollution in 2012, oil pollution level has established at 0.39 PI Index. Maximum of oil spills is observed in the spring and summer, which is probably due to favorable weather conditions for the detection of oil spills on radar images. According to the analysis of the shapes of the detected oil spills, it was concluded that the main polluters of the sea surface are vessels. No oil spills originated from the oil platform D-6 was detected in 2004-2015. Results of numerical experiments with the Seatrack Web oil spill model show that in the case of potential discharge of oil from the D-6 platform, oil will not reach the Curonian Spit beaches during 48 h after an accident
Oil pollution of the southeastern Baltic Sea by satellite remote sensing data and in-situ measurements
Results of operational satellite monitoring of oil pollution of the sea surface together with in-situ measurements of the oil products concentration in the water column for the first time allowed to establish relation between the surface pollution originated from ships, and the general characteristics of spatial and temporal distribution of oil products in the water column in the Southeastern Baltic Sea. Areas with heightened concentrations of oil products in the surface and bottom layers were determined for the study area. The main directions of the contamination propagation are agreed with the main direction of annual mean transport of substances in the Gdansk Basin
Magnetic fields in the early universe in the string approach to MHD
There is a reformulation of magnetohydrodynamics in which the fundamental
dynamical quantities are the positions and velocities of the lines of magnetic
flux in the plasma, which turn out to obey equations of motion very much like
ideal strings. We use this approach to study the evolution of a primordial
magnetic field generated during the radiation-dominated era in the early
Universe. Causality dictates that the field lines form a tangled random
network, and the string-like equations of motion, plus the assumption of
perfect reconnection, inevitably lead to a self-similar solution for the
magnetic field power spectrum. We present the predicted form of the power
spectrum, and discuss insights gained from the string approximation, in
particular the implications for the existence or not of an inverse cascade.Comment: 12 pages, 2 figure
Quantum and Classical Integrable Systems
The key concept discussed in these lectures is the relation between the
Hamiltonians of a quantum integrable system and the Casimir elements in the
underlying hidden symmetry algebra. (In typical applications the latter is
either the universal enveloping algebra of an affine Lie algebra, or its
q-deformation.) A similar relation also holds in the classical case. We discuss
different guises of this very important relation and its implication for the
description of the spectrum and the eigenfunctions of the quantum system.
Parallels between the classical and the quantum cases are thoroughly discussed.Comment: 59 pages, LaTeX2.09 with AMS symbols. Lectures at the CIMPA Winter
School on Nonlinear Systems, Pondicherry, January 199
Landau gauge Jacobian and BRST symmetry
Copyright © 2005 Elsevier B.V. All rights reserved. Copyright © 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. Submitted to Cornell University’s online archive www.arXiv.org in 2005 by Alexander Kalloniatis. Post-print sourced from www.arxiv.org.We propose a generalisation of the Faddeev-Popov trick for Yang-Mills fields in the Landau gauge. The gauge-fixing is achieved as a genuine change of variables. In particular the Jacobian that appears is the modulus of the standard Faddeev-Popov determinant. We give a path integral representation of this in terms of auxiliary bosonic and Grassman fields extended beyond the usual set for standard Landau gauge BRST. The gauge-fixing Lagrangian density appearing in this context is local and enjoys a new extended BRST and anti-BRST symmetry though the gauge-fixing Lagrangian density in this case is not BRST exact.M. Ghiotti, A.C. Kalloniatis and A.G. Williamshttp://www.elsevier.com/wps/find/journaldescription.cws_home/505706/description#descriptio
Generalized Drinfeld-Sokolov Reductions and KdV Type Hierarchies
Generalized Drinfeld-Sokolov (DS) hierarchies are constructed through local
reductions of Hamiltonian flows generated by monodromy invariants on the dual
of a loop algebra. Following earlier work of De Groot et al, reductions based
upon graded regular elements of arbitrary Heisenberg subalgebras are
considered. We show that, in the case of the nontwisted loop algebra
, graded regular elements exist only in those Heisenberg
subalgebras which correspond either to the partitions of into the sum of
equal numbers or to equal numbers plus one . We prove that the
reduction belonging to the grade regular elements in the case yields
the matrix version of the Gelfand-Dickey -KdV hierarchy,
generalizing the scalar case considered by DS. The methods of DS are
utilized throughout the analysis, but formulating the reduction entirely within
the Hamiltonian framework provided by the classical r-matrix approach leads to
some simplifications even for .Comment: 43 page
- …