15 research outputs found

    Proton Magnetic Resonance Spectroscopic Evidence of Glial Effects of Cumulative Lead Exposure in the Adult Human Hippocampus

    Get PDF
    BACKGROUND: Exposure to lead is known to have adverse effects on cognition in several different populations. Little is known about the underlying structural and functional correlates of such exposure in humans. OBJECTIVES: We assessed the association between cumulative exposure to lead and levels of different brain metabolite ratios in vivo using magnetic resonance spectroscopy (MRS). METHODS: We performed MRS on 15 men selected from the lowest quintile of patella bone lead within the Department of Veterans Affairs’ Normative Aging Study (NAS) and 16 from the highest to assess in the hippocampal levels of the metabolites N-acetylaspartate, myoinositol, and choline, each expressed as a ratio with creatine. Bone lead concentrations—indicators of cumulative lead exposure—were previously measured using K-X-ray fluorescence spectroscopy. MRS was performed on the men from 2002 to 2004. RESULTS: A 20-μg/g bone and 15-μg/g bone higher patella and tibia bone lead concentration—the respective interquartile ranges within the whole NAS—were associated with a 0.04 [95% confidence interval (CI), 0.00–0.08; p = 0.04] and 0.04 (95% CI, 0.00–0.08; p = 0.07) higher myoinositol-to-creatine ratio in the hippocampus. After accounting for patella bone lead declines over time, analyses adjusted for age showed that the effect of a 20-μg/g bone higher patella bone lead level doubled (0.09; 95% CI, 0.01–0.17; p = 0.03). CONCLUSIONS: Cumulative lead exposure is associated with an increase in the myinositol-to-creatine ratio. These data suggest that, as assessed with MRS, glial effects may be more sensitive than neuronal effects as an indicator of cumulative exposure to lead in adults

    Cumulative Exposure to Lead in Relation to Cognitive Function in Older Women

    Get PDF
    Background: Recent data indicate that chronic low-level exposure to lead is associated with accelerated declines in cognition in older age, but this has not been examined in women. Objective: We examined biomarkers of lead exposure in relation to performance on a battery of cognitive tests among older women. Methods: Patella and tibia bone lead—measures of cumulative exposure over many years—and blood lead, a measure of recent exposure, were assessed in 587 women 47–74 years of age. We assessed their cognitive function 5 years later using validated telephone interviews. Results: Mean ± SD lead levels in tibia, patella, and blood were 10.5 ± 9.7 μg/g bone, 12.6 ± 11.6 μg/g bone, and 2.9 ± 1.9 μg/dL, respectively, consistent with community-level exposures. In multivariable-adjusted analyses of all cognitive tests combined, levels of all three lead biomarkers were associated with worse cognitive performance. The association between bone lead and letter fluency score differed dramatically from the other bone lead-cognitive score associations, and exclusion of this particular score from the combined analyses strengthened the associations between bone lead and cognitive performance. Results were statistically significant only for tibia lead: one SD increase in tibia lead corresponded to a 0.051-unit lower standardized summary cognitive score (95% confidence interval: −0.099 to −0.003; p = 0.04), similar to the difference in cognitive scores we observed between women who were 3 years apart in age. Conclusions: These findings suggest that cumulative exposure to lead, even at low levels experienced in community settings, may have adverse consequences for women’s cognition in older age

    SRH and HrQOL: does social position impact differently on their link with health status?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Self-rated Health (SRH) and health-related quality of life (HRQoL) are used to evaluate health disparities. Like all subjective measures of health, they are dependent on health expectations that are associated with socioeconomic characteristics. It is thus needed to analyse the influence played by socioeconomic position (SEP) on the relationship between these two indicators and health conditions if we aim to use them to study health disparities. Our objective is to assess the influence of SEP on the relationship between physical health status and subjective health status, measured by SRH and HRQoL using the SF-36 scale.</p> <p>Methods</p> <p>We used data from the French National Health Survey. SEP was assessed by years of education and household annual income. Physical health status was measured by functional limitations and chronic low back pain.</p> <p>Results</p> <p>Regardless of their health status, people with lower SEP were more likely than their more socially advantaged counterparts to report poor SRH and poorer HRQoL, using any of the indicators of SEP. The negative impact of chronic low back pain on SRH was relatively greater in people with a high SEP than in those with a low SEP. In contrast, chronic low back pain and functional limitations had less impact on physical and mental component scores of quality of life for socially advantaged men and women.</p> <p>Conclusions</p> <p>Both SRH and HRQoL were lower among those reporting functional limitations or chronic low back pain. However, the change varied according SEP and the measure. In relative term, the negative impact of a given health condition seems to be greater on SRH and lower on HRQoL for people with higher SEP in comparison with people with low SEP. Using SRH could thus decrease socioeconomic differences. In contrast using HRQoL could increase these differences, suggesting being cautious when using these indicators for analyzing health disparities.</p

    Glycated albumin: a potential biomarker in diabetes

    No full text
    ABSTRACT Diabetes mellitus (DM) is a chronic and metabolic disease that presents a high global incidence. Glycated hemoglobin (A1C) is the reference test for long-term glucose monitoring, and it exhibits an association with diabetic chronic complications. However, A1C is not recommended in clinical situations which may interfere with the metabolism of hemoglobin, such as in hemolytic, secondary or iron deficiency anemia, hemoglobinopathies, pregnancy, and uremia. The glycated albumin (GA) is a test that reflects short-term glycemia and is not influenced by situations that falsely alter A1C levels. GA is the higher glycated portion of fructosamine. It is measured by a standardized enzymatic methodology, easy and fast to perform. These laboratory characteristics have ensured the highlight of GA in studies from the last decade, as a marker of monitoring and screening for DM, as well as a predictor of long-term outcomes of the disease. The aim of this review was to discuss the physiological and biochemistry characteristics of the GA, as well as its clinical utility in DM.</div
    corecore