83 research outputs found

    A chemical biology approach to control endocannabinoid biosynthesis

    Get PDF
    Endocannabinoids play an essential role in human health and disease, regulating processes such as immunomodulation, energy balance and neurotransmission. Diacylglycerollipase-α (DAGL-α) is responsible for the production of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the central nervous system. It is a potential drug target for the treatment of obesity and neurodegenerative diseases. Currently, there are no selective inhibitors and activity-based probes available for its study. The identification of selective DAGL- inhibitors is hampered by a lack of assays that make use of endogenous DAGL- activity in proteomes. Determination of the selectivity of the inhibitors in native tissues is important, because DAGL- belongs to the class of serine hydrolases, containing more than 200 members with various physiological functions. Here, I will present a chemical biology approach to identify and characterize highly selective chemical probes to study the function of this protein both in vitro and in vivo.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Innovation strategy in industry: case of the scheduling problem on parallel identical machines

    Get PDF
    In this paper, we propose an innovation strategy in the industry (case of the scheduling problem on two parallel identical machines), with the objective of minimizing the weighted sum of the end dates of jobs, this problem is NP-hard. In this frame, we suggested a novel heuristics: (H1), (H2), (H3), with two types of neighborhood (neighborhood by SWAP and neighborhood by INSERT). Next, we analyze the incorporation of three diversification times (T1), (T2), and (T3) with the aim of exploring unvisited regions of the solution space. It must be noted that job movement can be within one zone or between different zones. Computational tests are performed on 6 problems with up to 2 machines and 500 jobs

    CROSS-CULTURAL EMPATHY IN EFL CLASSES: A DIALOGIC APPROACH TO TEACHING LITERATURE

    Get PDF
    With the turn of the 21st century, the world has flipped into a multicultural space in which cultural gaps have been bridged by a communal sense of awareness that fostered the process of cross-cultural empathy. In the field of education, ensuring a dialogic atmosphere tends to hog the limelight of the major academics shaping a stiff bastion for effective learning pedagogies. The significance of cultural empathy in EFL classes lies in facilitating the acquisition of communicative competencies of the targeted language, through the use of a Bakhtinian dialogic approach and implementing it in the praxis of the learning atmosphere.  The Primary aim of this paper is to investigate the teaching methods and the learning paradigms that allow us to measure the extent to which a dialogic approach advocates collaboration and reflexive interaction among EFL learners to increase their cultural empathy. Relying on descriptive and analytical methods, the present paper also seeks to clarify the significance of this approach in teaching literature, given the fact that literary works consist fertile grounds for diverse points of view captured through the multifaceted understanding of the interwoven links between literary texts. This research concludes that dialogism plays a pivotal role above all teaching practices as it accords a high premium on the critical scrutiny of literary texts. It suggests that, through this approach, teacher-students and students-students discussions during the analysis of texts formulate a robust booster for the English Language enhancement, ergo, cross-cultural empathy

    Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma

    Get PDF
    Introduction: Medulloblastoma (MB) is the most frequent malignant brain tumor in children. Four subgroups with distinct genetic, epigenetic and clinical characteristics have been identified. Survival remains particularly poor in patients with Group 3 tumors harbouring a MYC amplification. We herein explore the molecular mechanisms and translational implications of class I histone deacetylase (HDAC) inhibition in MYC driven MBs. Material and Methods: Expression of HDACs in primary MB subgroups was compared to normal brain tissue. A panel of MB cell lines, including Group 3 MYC amplified cell lines, were used as model systems. Cells were treated with HDAC inhibitors (HDACi) selectively targeting class I or IIa HDACs. Depletion of HDAC2 was performed. Intracellular HDAC activity, cellular viability, metabolic activity, caspase activity, cell cycle progression, RNA and protein expression were analyzed. Results: HDAC2 was found to be overexpressed in MB subgroups with poor prognosis (SHH, Group 3 and Group 4) compared to normal brain and the WNT subgroup. Inhibition of the enzymatic activity of the class I HDACs reduced metabolic activity, cell number, and viability in contrast to inhibition of class IIa HDACs. Increased sensitivity to HDACi was specifically observed in MYC amplified cells. Depletion of HDAC2 increased H4 acetylation and induced cell death. Simulation of clinical pharmacokinetics showed time-dependent on target activity that correlated with binding kinetics of HDACi compounds. Conclusions: We conclude that HDAC2 is a valid drug target in patients with MYC amplified MB. HDACi should cover HDAC2 in their inhibitory profile and timing and dosing regimen in clinical trials should take binding kinetics of compounds into consideration

    Identification of low and very high-risk patients with non-WNT/non-SHH medulloblastoma by improved clinico-molecular stratification of the HIT2000 and I-HIT-MED cohorts

    Full text link
    Molecular groups of medulloblastoma (MB) are well established. Novel risk stratification parameters include Group 3/4 (non-WNT/non-SHH) methylation subgroups I-VIII or whole-chromosomal aberration (WCA) phenotypes. This study investigates the integration of clinical and molecular parameters to improve risk stratification of non-WNT/non-SHH MB. Non-WNT/non-SHH MB from the HIT2000 study and the HIT-MED registries were selected based on availability of DNA-methylation profiling data. MYC or MYCN amplification and WCA of chromosomes 7, 8, and 11 were inferred from methylation array-based copy number profiles. In total, 403 non-WNT/non-SHH MB were identified, 346/403 (86%) had a methylation class family Group 3/4 methylation score (classifier v11b6) ≥ 0.9, and 294/346 (73%) were included in the risk stratification modeling based on Group 3 or 4 score (v11b6) ≥ 0.8 and subgroup I-VIII score (mb_g34) ≥ 0.8. Group 3 MB (5y-PFS, survival estimation ± standard deviation: 41.4 ± 4.6%; 5y-OS: 48.8 ± 5.0%) showed poorer survival compared to Group 4 (5y-PFS: 68.2 ± 3.7%; 5y-OS: 84.8 ± 2.8%). Subgroups II (5y-PFS: 27.6 ± 8.2%) and III (5y-PFS: 37.5 ± 7.9%) showed the poorest and subgroup VI (5y-PFS: 76.6 ± 7.9%), VII (5y-PFS: 75.9 ± 7.2%), and VIII (5y-PFS: 66.6 ± 5.8%) the best survival. Multivariate analysis revealed subgroup in combination with WCA phenotype to best predict risk of progression and death. The integration of clinical (age, M and R status) and molecular (MYC/N, subgroup, WCA phenotype) variables identified a low-risk stratum with a 5y-PFS of 94 ± 5.7 and a very high-risk stratum with a 5y-PFS of 29 ± 6.1%. Validation in an international MB cohort confirmed the combined stratification scheme with 82.1 ± 6.0% 5y-PFS in the low and 47.5 ± 4.1% in very high-risk groups, and outperformed the clinical model. These newly identified clinico-molecular low-risk and very high-risk strata, accounting for 6%, and 21% of non-WNT/non-SHH MB patients, respectively, may improve future treatment stratification

    Cross-Species Genomics Reveals Oncogenic Dependencies in ZFTA/C11orf95 Fusion–Positive Supratentorial Ependymomas

    Get PDF
    Molecular groups of supratentorial ependymomas comprise tumors with ZFTA-RELA or YAP1-involving fusions and fusion-negative subependymoma. However, occasionally supratentorial ependymomas cannot be readily assigned to any of these groups due to lack of detection of a typical fusion and/or ambiguous DNA methylation-based classification. An unbiased approach with a cohort of unprecedented size revealed distinct methylation clusters composed of tumors with ependymal but also various other histological features containing alternative translocations that shared ZFTA as a partner gene. Somatic overexpression of ZFTA-associated fusion genes in the developing cerebral cortex is capable of inducing tumor formation in vivo, and cross-species comparative analyses identified GLI2 as a key downstream regulator of tumorigenesis in all tumors. Targeting GLI2 with arsenic trioxide caused extended survival of tumor-bearing animals, indicating a potential therapeutic vulnerability in ZFTA fusion-positive tumors

    Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA): a molecularly distinct brain tumor type with recurrent NTRK gene fusions

    Get PDF
    Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors-distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (n = 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed ATRX alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly NTRK1-3) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of CDKN2A/B in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (n = 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in ATRX and homozygous deletions of CDKN2A/B. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors
    corecore