366 research outputs found

    BIOMEX (Biology and Mars Experiment): Preliminary results on Antarctic black cryptoendolithic fungi in ground based experiments

    Get PDF
    The main goal for astrobiologists is to find traces of present or past life in extraterrestrial environment or in meteorites. Biomolecules, such as lipids, pigments or polysaccharides, may be useful to establish the presence of extant or extinct life (Simoneit, B et al., 1998). BIOMEX (Biology and Mars Experiment) aims to measure to what extent biomolecules, such as pigments and cellular components, preserve their stability under space and Mars-like conditions. The experiment has just been launched in the space and will be exposed on EXPOSE-R payload to the outside of the International Space Station (ISS) for about 2 years. Among a number of extremophilic microorganisms tested, the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 was included in the experiment. The fungus, living in the airspaces of porous rocks, was already chosen in previous astrobiological investigation for studying the interplanetary transfer of life via meteorites. In that context, the fungus survived 18 months of exposure outside of the ISS (Onofri al., 2012); for all these reasons it is considered an optimal eukaryotic model for astrobiological exploration. Before launch dried samples were exposed, in ground based experiments, to extreme conditions, including vacuum, irradiation and temperature cycles.Upon sample re-hydration and survival analysis, including colony forming ability, Propidium MonoAzide (PMA) assay-coupled quantitative PCR (Mohapatra and La Duc, 2012) all the test systems survived, neither any DNA damage was detectable. Our analyses focused also on mineral-microorganisms interactions and stability/degradation of typical fungal macromolecules, in particular melanin, when exposed to space and simulated Martian conditions, contributing to the development of libraries of biosignatures in rocks, supporting future exploration missions

    Molecular phylogenetic studies on the lichenicolous Xanthoriicola physciae reveal Antarctic rock-inhabiting fungi and Piedraia species among closest relatives in the Teratosphaeriaceae

    Get PDF
    The phylogenetic placement of the monotypic dematiaceous hyphomycete genus Xanthoriicola was investigated. Sequences of the nLSU region were obtained from 11 specimens of X. physciae, which formed a single clade supported both by parsimony (91 %), and maximum likelihood (100 %) bootstraps, and Bayesian Posterior Probabilities (1.0). The closest relatives in the parsimony analysis were species of Piedraria, while in the Bayesian analysis they were those of Friedmanniomyces. These three genera, along with species of Elasticomyces, Recurvomyces, Teratosphaeria, and sequences from unnamed rock-inhabiting fungi (RIF), were all members of the same major clade within Capnodiales with strong support in both analyses, and for which the family name Teratosphaeriaceae can be used pending further studies on additional taxa

    Metagenomes in the borderline ecosystems of the Antarctic cryptoendolithic communities

    Get PDF
    Antarctic cryptoendolithic communities are microbial ecosystems dwelling inside rocks of the Antarctic desert. We present the first 18 shotgun metagenomes from these communities to further characterize their composition, biodiversity, functionality, and adaptation. Future studies will integrate taxonomic and functional annotations to examine the pathways necessary for life to evolve in the extreme

    Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions

    Get PDF
    Dried colonies of the Antarctic rock-inhabiting meristematic fungi Cryomyces antarcticus CCFEE 515, CCFEE 534 and C. minteri CCFEE 5187, as well as fragments of rocks colonized by the Antarctic cryptoendolithic community, were exposed to a set of ground-based experiment verification tests (EVTs) at the German Aerospace Center (DLR, Köln, Germany). These were carried out to test the tolerance of these organisms in view of their possible exposure to space conditions outside of the International Space Station (ISS). Tests included single or combined simulated space and Martian conditions. Responses were analysed both by cultural and microscopic methods. Thereby, colony formation capacities were measured and the cellular viability was assessed using live/dead dyes FUN 1 and SYTOX Green. The results clearly suggest a general good resistance of all the samples investigated. C. minteri CCFEE 5187, C. antarcticus CCFEE 515 and colonized rocks were selected as suitable candidates to withstand space flight and long-term permanence in space on the ISS in the framework of the LIchens and Fungi Experiments (LIFE programme, European Space Agency)

    Biodiversity, evolution and adaptation of fungi in extreme environments

    Get PDF
    Fungi play irreplaceable roles for ecosystem functioning. They may adopt different lifestyles, for example saprotrophs, symbionts or parasites: some species are cosmopolitan with a wide distribution and others, thanks to their ecological plasticity, may adapt to harsh environments precluded to most of life forms. In stressing conditions, their role is even more crucial for the recycling of organic matter or favoring nutrients uptake. When the conditions become really extreme and competition is low, fungi focus on extremotolerance and evolve peculiar competences to exploit natural or xenobiotic resources in the particular constrains imposed by the environment. This paper focuses on three different cases of fungal life in the extremes: hydrocarbon-polluted sites, extremely acidic substrates, and littoral dunes, aiming to give few but significant examples of the role of these fascinating organisms in peculiar habitats and the valuable biotechnological potentialities of the abilities they have evolved in response to such constrains

    Phylogeny of rock-inhabiting fungi related to Dothideomycetes

    Get PDF
    The class Dothideomycetes (along with Eurotiomycetes) includes numerous rock-inhabiting fungi (RIF), a group of ascomycetes that tolerates surprisingly well harsh conditions prevailing on rock surfaces. Despite their convergent morphology and physiology, RIF are phylogenetically highly diverse in Dothideomycetes. However, the positions of main groups of RIF in this class remain unclear due to the lack of a strong phylogenetic framework. Moreover, connections between rock-dwelling habit and other lifestyles found in Dothideomycetes such as plant pathogens, saprobes and lichen-forming fungi are still unexplored. Based on multigene phylogenetic analyses, we report that RIF belong to Capnodiales (particularly to the family Teratosphaeriaceae s.l.), Dothideales, Pleosporales, and Myriangiales, as well as some uncharacterised groups with affinities to Dothideomycetes. Moreover, one lineage consisting exclusively of RIF proved to be closely related to Arthoniomycetes, the sister class of Dothideomycetes. The broad phylogenetic amplitude of RIF in Dothideomycetes suggests that total species richness in this class remains underestimated. Composition of some RIF-rich lineages suggests that rock surfaces are reservoirs for plant-associated fungi or saprobes, although other data also agree with rocks as a primary substrate for ancient fungal lineages. According to the current sampling, long distance dispersal seems to be common for RIF. Dothideomycetes lineages comprising lichens also include RIF, suggesting a possible link between rock-dwelling habit and lichenisation

    Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi

    Get PDF
    Fungal strains isolated from rocks and lichens collected in the Antarctic ice-free area of the Victoria Land, one of the coldest and driest habitats on earth, were found in two phylogenetically isolated positions within the subclass Dothideomycetidae. They are here reported as new genera and species, Recurvomyces mirabilis gen. nov., sp. nov. and Elasticomyces elasticus gen. nov., sp. nov. The nearest neighbours within the clades were other rock-inhabiting fungi from dry environments, either cold or hot. Plant-associated Mycosphaerella-like species, known as invaders of leathery leaves in semi-arid climates, are also phylogenetically related with the new taxa. The clusters are also related to the halophilic species Hortaea werneckii, as well as to acidophilic fungi. One of the latter, able to grow at pH 0, is Scytalidium acidophilum, which is ascribed here to the newly validated genus Acidomyces. The ecological implications of this finding are discussed
    corecore