58 research outputs found

    Online Saturated Cost Partitioning for Classical Planning

    Get PDF
    Saturated cost partitioning is a general method for admissiblyadding heuristic estimates for optimal state-space search. Thealgorithm strongly depends on the order in which it considers the heuristics. The strongest previous approach precomputes a set of diverse orders and the corresponding saturatedcost partitionings before the search. This makes evaluatingthe overall heuristic very fast, but requires a long precomputation phase. By diversifying the set of orders online duringthe search we drastically speed up the planning process andeven solve slightly more tasks

    Better Orders for Saturated Cost Partitioning in Optimal Classical Planning

    Get PDF

    Subset-Saturated Cost Partitioning for Optimal Classical Planning

    Get PDF
    Cost partitioning is a method for admissibly adding multiple heuristics for state-space search. Saturated cost partitioning considers the given heuristics in sequence, assigning to each heuristic the minimum fraction of remaining costs that it needs to preserve its estimates for all states. We generalize saturated cost partitioning by allowing to preserve the heuristic values of only a subset of states and show that this often leads to stronger heuristics

    Explainable Planner Selection

    Get PDF
    Since no classical planner consistently outperforms all oth ers, it is important to select a planner that works well for a given classical planning task. The two strongest approaches for planner selection use image and graph convolutional neu ral networks. They have the drawback that the learned mod els are not interpretable. To obtain explainable models, we identify a small set of simple task features and show that el ementary and interpretable machine learning techniques can use these features to solve as many tasks as the approaches based on neural networks

    Counterexample-guided cartesian abstraction refinement and saturated cost partitioning for optimal classical planning

    Get PDF
    Heuristic search with an admissible heuristic is one of the most prominent approaches to solving classical planning tasks optimally. In the first part of this thesis, we introduce a new family of admissible heuristics for classical planning, based on Cartesian abstractions, which we derive by counterexample-guided abstraction refinement. Since one abstraction usually is not informative enough for challenging planning tasks, we present several ways of creating diverse abstractions. To combine them admissibly, we introduce a new cost partitioning algorithm, which we call saturated cost partitioning. It considers the heuristics sequentially and uses the minimum amount of costs that preserves all heuristic estimates for the current heuristic before passing the remaining costs to subsequent heuristics until all heuristics have been served this way. In the second part, we show that saturated cost partitioning is strongly influenced by the order in which it considers the heuristics. To find good orders, we present a greedy algorithm for creating an initial order and a hill-climbing search for optimizing a given order. Both algorithms make the resulting heuristics significantly more accurate. However, we obtain the strongest heuristics by maximizing over saturated cost partitioning heuristics computed for multiple orders, especially if we actively search for diverse orders. The third part provides a theoretical and experimental comparison of saturated cost partitioning and other cost partitioning algorithms. Theoretically, we show that saturated cost partitioning dominates greedy zero-one cost partitioning. The difference between the two algorithms is that saturated cost partitioning opportunistically reuses unconsumed costs for subsequent heuristics. By applying this idea to uniform cost partitioning we obtain an opportunistic variant that dominates the original. We also prove that the maximum over suitable greedy zero-one cost partitioning heuristics dominates the canonical heuristic and show several non-dominance results for cost partitioning algorithms. The experimental analysis shows that saturated cost partitioning is the cost partitioning algorithm of choice in all evaluated settings and it even outperforms the previous state of the art in optimal classical planning

    Best-First Width Search for Lifted Classical Planning

    Get PDF
    Lifted planners are useful to solve tasks that are too hard to ground. Still, computing informative lifted heuristics is difficult: directly adapting ground heuristics to the lifted setting is often too expensive, and extracting heuristics from the lifted representation can be uninformative. A natural alternative for lifted planners is to use width-based search. These algorithms are among the strongest for ground planning, even the variants that do not access the action model. In this work, we adapt best-first width search to the lifted setting and show that this yields state-of-the-art performance for hard-to-ground planning tasks

    Narrowing the Gap Between Saturated and Optimal Cost Partitioning for Classical Planning

    Get PDF
    In classical planning, cost partitioning is a method for admissibly combining a set of heuristic estimators by distributing operator costs among the heuristics. An optimal cost partitioning is often prohibitively expensive to compute. Saturated cost partitioning is an alternative that is much faster to compute and has been shown to offer high-quality heuristic guidance on Cartesian abstractions. However, its greedy nature makes it highly susceptible to the order in which the heuristics are considered. We show that searching in the space of orders leads to significantly better heuristic estimates than with previously considered orders. Moreover, using multiple orders leads to a heuristic that is significantly better informed than any single-order heuristic. In experiments with Cartesian abstractions, the resulting heuristic approximates the optimal cost partitioning very closely

    A Comparison of Cost Partitioning Algorithms for Optimal Classical Planning

    Get PDF
    Cost partitioning is a general and principled approach for constructing additive admissible heuristics for state-space search. Cost partitioning approaches for optimal classical planning include optimal cost partitioning, uniform cost partitioning, zero-one cost partitioning, saturated cost partitioning, post-hoc optimization and the canonical heuristic for pattern databases. We compare these algorithms theoretically, showing that saturated cost partitioning dominates greedy zero-one cost partitioning. As a side effect of our analysis, we obtain a new cost partitioning algorithm dominating uniform cost partitioning. We also evaluate these algorithms experimentally on pattern databases, Cartesian abstractions and landmark heuristics, showing that saturated cost partitioning is usually the method of choice on the IPC benchmark suite

    Saturated Post-hoc Optimization for Classical Planning

    Get PDF
    Saturated cost partitioning and post-hoc optimization are two powerful cost partitioning algorithms for optimal classical planning. The main idea of saturated cost partitioning is to give each considered heuristic only the fraction of remaining operator costs that it needs to prove its estimates. We show how to apply this idea to post-hoc optimization and obtain a heuristic that dominates the original both in theory and on the IPC benchmarks
    corecore