24 research outputs found
A novel and sensitive functional assay for complement Factor I based on the third proteolytic clip of C3b.
A sensitive assay for the functional activity of complement Factor I is described. This is based on its third proteolytic clip whereby Factor I cleaves cell-bound iC3b to cell-bound C3dg and soluble C3c, thereby abolishing conglutination of the cells. Factor H is required as a co-factor for Factor I activity. Because of the low affinity of iC3b for Factor H, the assay needs to be performed at low ionic strength. This assay is easier to perform than those based on the conversion of C3b to iC3b (the first two Factor I clips), there being no need for the unstable intermediate EAC142 or for purified C3
Mixed adjuvant formulations reveal a new combination that elicit antibody response comparable to Freund's adjuvants.
Adjuvant formulations capable of inducing high titer and high affinity antibody responses would provide a major advance in the development of vaccines to viral infections such as HIV-1. Although oil-in-water emulsions, such as Freund's adjuvant (FCA/FIA), are known to be potent, their toxicity and reactogenicity make them unacceptable for human use. Here, we explored different adjuvants and compared their ability to elicit antibody responses to FCA/FIA. Recombinant soluble trimeric HIV-1 gp140 antigen was formulated in different adjuvants, including FCA/FIA, Carbopol-971P, Carbopol-974P and the licensed adjuvant MF59, or combinations of MF59 and Carbopol. The antigen-adjuvant formulation was administered in a prime-boost regimen into rabbits, and elicitation of antigen binding and neutralizing antibodies (nAbs) was evaluated. When used individually, only FCA/FIA elicited significantly higher titer of nAbs than the control group (gp140 in PBS (p<0.05)). Sequential prime-boost immunizations with different adjuvants did not offer improvements over the use of FCA/FIA or MF59. Remarkably however, the concurrent use of the combination of Carbopol-971P and MF59 induced potent adjuvant activity with significantly higher titer nAbs than FCA/FIA (p<0.05). This combination was not associated with any obvious local or systemic adverse effects. Antibody competition indicated that the majority of the neutralizing activities were directed to the CD4 binding site (CD4bs). Increased antibody titers to the gp41 membrane proximal external region (MPER) and gp120 V3 were detected when the more potent adjuvants were used. These data reveal that the combination of Carbopol-971P and MF59 is unusually potent for eliciting nAbs to a variety of HIV-1 nAb epitopes
Recommended from our members
Evaluation of the recombinant proteins RlpB and VacJ as a vaccine for protection against Glaesserella parasuis in pigs
Funder: U.S. Department of Agriculture; doi: http://dx.doi.org/10.13039/100000199Funder: Oak Ridge Institute for Science and Education; doi: http://dx.doi.org/10.13039/100006229Funder: Department for Environment, Food and Rural Affairs; doi: http://dx.doi.org/10.13039/501100000277Abstract: Background: Glaesserella parasuis, the causative agent of Glӓsser’s disease, is widespread in swine globally resulting in significant economic losses to the swine industry. Prevention of Glӓsser’s disease in pigs has been plagued with an inability to design broadly protective vaccines, as many bacterin based platforms generate serovar or strain specific immunity. Subunit vaccines are of interest to provide protective immunity to multiple strains of G. parasuis. Selected proteins for subunit vaccination should be widespread, highly conserved, and surface exposed. Results: Two candidate proteins for subunit vaccination (RlpB and VacJ) against G. parasuis were identified using random mutagenesis and an in vitro organ culture system. Pigs were vaccinated with recombinant RlpB and VacJ, outer membrane proteins with important contributions to cellular function and viability. Though high antibody titers to the recombinant proteins and increased interferon-γ producing cells were found in subunit vaccinated animals, the pigs were not protected from developing systemic disease. Conclusions: It appears there may be insufficient RlpB and VacJ exposed on the bacterial surface for antibody to bind, preventing high RlpB and VacJ specific antibody titers from protecting animals from G. parasuis. Additionally, this work confirms the importance of utilizing the natural host species when assessing the efficacy of vaccine candidates
Evaluation of the recombinant proteins RlpB and VacJ as a vaccine for protection against Glaesserella parasuis in pigs
Funder: U.S. Department of Agriculture; doi: http://dx.doi.org/10.13039/100000199Funder: Oak Ridge Institute for Science and Education; doi: http://dx.doi.org/10.13039/100006229Funder: Department for Environment, Food and Rural Affairs; doi: http://dx.doi.org/10.13039/501100000277Abstract: Background: Glaesserella parasuis, the causative agent of Glӓsser’s disease, is widespread in swine globally resulting in significant economic losses to the swine industry. Prevention of Glӓsser’s disease in pigs has been plagued with an inability to design broadly protective vaccines, as many bacterin based platforms generate serovar or strain specific immunity. Subunit vaccines are of interest to provide protective immunity to multiple strains of G. parasuis. Selected proteins for subunit vaccination should be widespread, highly conserved, and surface exposed. Results: Two candidate proteins for subunit vaccination (RlpB and VacJ) against G. parasuis were identified using random mutagenesis and an in vitro organ culture system. Pigs were vaccinated with recombinant RlpB and VacJ, outer membrane proteins with important contributions to cellular function and viability. Though high antibody titers to the recombinant proteins and increased interferon-γ producing cells were found in subunit vaccinated animals, the pigs were not protected from developing systemic disease. Conclusions: It appears there may be insufficient RlpB and VacJ exposed on the bacterial surface for antibody to bind, preventing high RlpB and VacJ specific antibody titers from protecting animals from G. parasuis. Additionally, this work confirms the importance of utilizing the natural host species when assessing the efficacy of vaccine candidates
Emergence of methicillin resistance predates the clinical use of antibiotics
The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics(1). Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two beta-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development
Emergence of methicillin resistance predates the clinical use of antibiotics.
The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two β-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development
The interaction of streptococcal inhibitor of complement (SIC) and its proteolytic fragments with the human beta defensins
Streptococcal inhibitor of complement (SIC) is a 31 kDa extracellular protein produced by a few highly virulent strains of Streptococcus pyogenes (in particular the M1 strain). It has been shown additionally to inhibit four further components of the mucosal innate response—lysozyme, secretory leucocyte proteinase inhibitor, human α-defensin 1 and the cathelicidin LL-37 which are all bactericidal against Group A Streptococci (GAS). We now show that SIC also inhibits variably the antibacterial action of hBD-1, -2 and -3. By enzyme-linked immunosorbent assay (ELISA), SIC binds strongly to hBD-2 and hBD-3, but not at all to hBD-1. Investigation of the antimicrobial action of β-defensins hBD-1, -2 and -3 against GAS in two different buffer systems shows that both the killing efficiencies of all three defensins, and the binding of SIC to them, occurs more efficiently in 10 mm Tris buffer than in 10 mm phosphate. The lower ionic strength of the Tris buffer may underlie this effect. hBD-1 kills the M1 strain of GAS only in 10 mm Tris, but is able to kill an M6 (SIC negative) strain in 10 mm phosphate. The inhibition of hBD-3 by SIC is clearly of physiological relevance, that of hBD-2 is likely to be so, but the inhibition of hBD-1 occurs only at lower ionic strength than is likely to be encountered in vivo. Elastase digestion of SIC yields three major fragments of MW 3·843 kDa comprising residues 1–33 (fragment A); 10·369 kDa comprising residues 34–126 (fragment B); and MW 16·487 kDa, comprising residues 127–273 (fragment C). By ELISA, only fragment B binds to hBD-2 and hBD-3 and this may indicate the inhibitory portion of the SIC molecule
Streptococcal Inhibitor of Complement Inhibits Two Additional Components of the Mucosal Innate Immune System: Secretory Leukocyte Proteinase Inhibitor and Lysozyme
Streptococcal inhibitor of complement (SIC) is a 31-kDa extracellular protein of a few, very virulent, strains of Streptococcus pyogenes (particularly M1 strains). It is secreted in large quantities (about 5 mg/liter) and inhibits complement lysis by blocking the membrane insertion site on C5b67. We describe investigations into the interaction of SIC with three further major components of the innate immune system found in airway surface liquid, namely, secretory leukocyte proteinase inhibitor (SLPI), lysozyme, and lactoferrin. Enzyme-linked immunosorbent assays showed that SIC binds to SLPI and to both human and hen egg lysozyme (HEL) but not to lactoferrin. Studies using (125)I-labeled proteins showed that SIC binds approximately two molecules of SLPI and four molecules of lysozyme. SLPI binding shows little temperature dependence and a small positive enthalpy, suggesting that the binding is largely hydrophobic. By contrast, lysozyme binding shows strong temperature dependence and a substantial negative enthalpy, suggesting that the binding is largely ionic. Lysozyme is precipitated from solution by SIC. Further studies examined the ability of SIC to block the biological activities of SLPI and lysozyme. An M1 strain of group A streptococci was killed by SLPI, and the antibacterial activity of this protein was inhibited by SIC. SIC did not inhibit the antiproteinase activity of SLPI, implying that there is specific inhibition of the antibacterial domain. The antibacterial and enzymatic activities of lysozyme were also inhibited by SIC. SIC is the first biological inhibitor of the antibacterial action of SLPI to be described and may prove to be an important tool for investigating this activity in vivo. Inhibition of the antibacterial actions of SLPI and lysozyme would be advantageous to S. pyogenes in establishing colonization on mucosal surfaces, and we propose that this is the principal function of SIC
Recommended from our members
A novel family of defensin-like peptides from Hermetia illucens with antibacterial properties.
BACKGROUND: The world faces a major infectious disease challenge. Interest in the discovery, design, or development of antimicrobial peptides (AMPs) as an alternative approach for the treatment of bacterial infections has increased. Insects are a good source of AMPs which are the main effector molecules of their innate immune system. Black Soldier Fly Larvae (BSFL) are being developed for large-scale rearing for food sustainability, waste reduction and as sustainable animal and fish feed. Bioinformatic studies have suggested that BSFL have the largest number of AMPs identified in insects. However, most AMPs identified in BSF have not yet undergone antimicrobial evaluation but are promising leads to treat critical infections. RESULTS: Jg7197.t1, Jg7902.t1 and Jg7904.t1 were expressed into the haemolymph of larvae following infection with Salmonella enterica serovar Typhimurium and were predicted to be AMPs using the computational tool ampir. The genes encoding these proteins were within 2 distinct clusters in chromosome 1 of the BSF genome. Following removal of signal peptides, predicted structures of the mature proteins were superimposed, highlighting a high degree of structural conservation. The 3 AMPs share primary sequences with proteins that contain a Kunitz-binding domain; characterised for inhibitory action against proteases, and antimicrobial activities. An in vitro antimicrobial screen indicated that heterologously expressed SUMO-Jg7197.t1 and SUMO-Jg7902.t1 did not show activity against 12 bacterial strains. While recombinant SUMO-Jg7904.t1 had antimicrobial activity against a range of Gram-negative and Gram-positive bacteria, including the serious pathogen Pseudomonas aeruginosa. CONCLUSIONS: We have cloned and purified putative AMPs from BSFL and performed initial in vitro experiments to evaluate their antimicrobial activity. In doing so, we have identified a putative novel defensin-like AMP, Jg7904.t1, encoded in a paralogous gene cluster, with antimicrobial activity against P. aeruginosa.This work was funded by a BBSRC-iCASE PhD studentship [BB/M011194/1] to LF. TG was supported by BBSRC grant [BB/M011194/1]