1,714 research outputs found
Modeling the Radio Background from the First Black Holes at Cosmic Dawn: Implications for the 21 cm Absorption Amplitude
We estimate the 21 cm Radio Background from accretion onto the first
intermediate-mass Black Holes between and .
Combining potentially optimistic, but plausible, scenarios for black hole
formation and growth with empirical correlations between luminosity and
radio-emission observed in low-redshift active galactic nuclei, we find that a
model of black holes forming in molecular cooling halos is able to produce a 21
cm background that exceeds the Cosmic Microwave Background (CMB) at though models involving larger halo masses are not entirely excluded. Such
a background could explain the surprisingly large amplitude of the 21 cm
absorption feature recently reported by the EDGES collaboration. Such black
holes would also produce significant X-ray emission and contribute to the
keV soft X-ray background at the level of
erg sec cm deg, consistent with existing constraints. In
order to avoid heating the IGM over the EDGES trough, these black holes would
need to be obscured by Hydrogen column depths of . Such black holes would avoid violating contraints on
the CMB optical depth from Planck if their UV photon escape fractions were
below , which would be a natural result of
imposed by an unheated IGM.Comment: 10 pages, 7 figures, accepted to ApJ, replacement to match submitted
versio
Physics of agarose fluid gels: Rheological properties and microstructure
Agarose, a strongly gelling polysaccharide, is a common ingredient used to optimize the viscoelastic properties of a multitude of food products. Through aggregation of double helices via hydrogen bonds while cooling under quiescent conditions it forms firm and brittle gels. However, this behavior can be altered by manipulating the processing conditions viz shear. For example, gelation under shear leads to microgel particles with large surface area, which in turn leads to completely different rheological properties and texture. Such fluid gels are shown to play an important role in texture modification of foods and beverages for dysphagia patients. In this study, different concentration of agarose fluid gel (0.5 % wt, 1 % wt and 2 % wt) were considered. Rheological measurements of the microgel particles showed an increase of storage and loss modulus with increasing concentration. However, 1 % wt fluid gel exhibited the lowest viscosity in the low shear range and the shortest LVE range. Furthermore, the effect on the microstructure and size of gel particles were also investigated by using light microscopy and particle size analysis. It was observed that as the concentration of agarose increased the particle size and unordered chains present at the particle surface decreases. Based on our results, we propose specific models suggesting the impact of the particle size, the concentration and the “hairy” projections on the rheological and tribological properties that could help in understanding the differences in characteristics of fluid gels
A Low Noise Thermometer Readout for Ruthenium Oxide Resistors
The thermometer and thermal control system, for the Absolute Radiometer for
Cosmology, Astrophysics, and Diffuse Emission (ARCADE) experiment, is
described, including the design, testing, and results from the first flight of
ARCADE. The noise is equivalent to about 1 Omega or 0.15 mK in a second for the
RuO_2 resistive thermometers at 2.7 K. The average power dissipation in each
thermometer is 1 nW. The control system can take full advantage of the
thermometers to maintain stable temperatures. Systematic effects are still
under investigation, but the measured precision and accuracy are sufficient to
allow measurement of the cosmic background spectrum.
Journal-ref: Review of Scientific Instruments Vol 73 #10 (Oct 2002)Comment: 5 pages text 7 figure
A Spin Modulated Telescope to Make Two Dimensional CMB Maps
We describe the HEMT Advanced Cosmic Microwave Explorer (HACME), a balloon
borne experiment designed to measure sub-degree scale Cosmic Microwave
Background anisotropy over hundreds of square degrees, using a unique two
dimensional scanning strategy. A spinning flat mirror that is canted relative
to its spin axis modulates the direction of beam response in a nearly
elliptical path on the sky. The experiment was successfully flown in February
of 1996, achieving near laboratory performance for several hours at float
altitude. A map free of instrumental systematic effects is produced for a 3.5
hour observation of 630 square degrees, resulting in a flat band power upper
limit of (l(l+1)C_l/2 pi)^0.5 < 77 microK at l = 38 (95% confidence). The
experiment design, flight operations and data, including atmospheric effects
and noise performance, are discussed.Comment: 4 pages, 3 figure
The Temperature of the CMB at 10 GHz
We report the results of an effort to measure the low frequency portion of
the spectrum of the Cosmic Microwave Background Radiation (CMB), using a
balloon-borne instrument called ARCADE (Absolute Radiometer for Cosmology,
Astrophysics, and Diffuse Emission). These measurements are to search for
deviations from a thermal spectrum that are expected to exist in the CMB due to
various processes in the early universe. The radiometric temperature was
measured at 10 and 30 GHz using a cryogenic open-aperture instrument with no
emissive windows. An external blackbody calibrator provides an in situ
reference. A linear model is used to compare the radiometer output to a set of
thermometers on the instrument. The unmodeled residuals are less than 50 mK
peak-to-peak with a weighted RMS of 6 mK. Small corrections are made for the
residual emission from the flight train, atmosphere, and foreground Galactic
emission. The measured radiometric temperature of the CMB is 2.721 +/- 0.010 K
at 10 GHz and 2.694 +/- 0.032 K at 30 GHz.Comment: 8 pages including 5 figures. Submitted to The Astrophysical Journa
Prime Focus Spectrograph for the Subaru telescope: massively multiplexed optical and near-infrared fiber spectrograph
The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38 μm to 1.26 μm, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71 μm to 0.89 μm will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning will be performed by a positioner consisting of two stages of piezo-electric rotary motors. The positions of these motors are measured by taking an image of artificially back-illuminated fibers with the metrology camera located in the Cassegrain container; the fibers are placed in the proper location by iteratively measuring and then adjusting the positions of the motors. Target light reaches one of the four identical fast-Schmidt spectrograph modules, each with three arms. The PFS project has passed several project-wide design reviews and is now in the construction phase
- …