202 research outputs found
Ionization rates in a Bose-Einstein condensate of metastable Helium
We have studied ionizing collisions in a BEC of He*. Measurements of the ion
production rate combined with measurements of the density and number of atoms
for the same sample allow us to estimate both the 2 and 3-body contributions to
this rate. A comparison with the decay of the number of condensed atoms in our
magnetic trap, in the presence of an rf-shield, indicates that ionizing
collisions are largely or wholly responsible for the loss. Quantum depletion
makes a substantial correction to the 3-body rate constant.Comment: 4 pages, 3 figure
Getting the elastic scattering length by observing inelastic collisions in ultracold metastable helium atoms
We report an experiment measuring simultaneously the temperatureand the flux
of ions produced by a cloud of triplet metastablehelium atoms at the
Bose-Einstein critical temperature. The onsetof condensation is revealed by a
sharp increase of the ion fluxduring evaporative cooling. Combining our
measurements withprevious measurements of ionization in a pure BEC,we extract
an improved value of the scattering length nm. The analysis
includes corrections takinginto accountthe effect of atomic interactions on the
criticaltemperature, and thus an independent measurement of the
scatteringlength would allow a new test of these calculations
A Large Atom Number Metastable Helium Bose-Einstein Condensate
We have produced a Bose-Einstein condensate of metastable helium (4He*)
containing over 1.5x10^7 atoms, which is a factor of 25 higher than previously
achieved. The improved starting conditions for evaporative cooling are obtained
by applying one-dimensional Doppler cooling inside a magnetic trap. The same
technique is successfully used to cool the spin-polarized fermionic isotope
(3He*), for which thermalizing collisions are highly suppressed. Our detection
techniques include absorption imaging, time-of-flight measurements on a
microchannel plate detector and ion counting to monitor the formation and decay
of the condensate.Comment: 4 pages, 3 figures (changed content
Stent Fracture after Everolimus-Eluting Stent Implantation
Compared with bare-metal stents, drug-eluting stents (DES) have greatly reduced the risk of in-stent restenosis (ISR) by inhibiting neointimal growth. Nevertheless, DES are still prone to device failure, which may lead to cardiac events. Recently, stent fracture (SF) has emerged as a potential mechanism of DES failure that is associated with ISR. Stent fracture is strongly related to stent type, and prior reports suggest that deployment of sirolimus eluting stents (SES) may be associated with a higher risk of SF compared to other DES. Everolimus eluting stents (EESs) represent a new generation of DES with promising results. The occurrence of SF with EES has not been well established. The present paper describes two cases of EES fracture associated with ISR
Randomized Benchmarking of Quantum Gates
A key requirement for scalable quantum computing is that elementary quantum
gates can be implemented with sufficiently low error. One method for
determining the error behavior of a gate implementation is to perform process
tomography. However, standard process tomography is limited by errors in state
preparation, measurement and one-qubit gates. It suffers from inefficient
scaling with number of qubits and does not detect adverse error-compounding
when gates are composed in long sequences. An additional problem is due to the
fact that desirable error probabilities for scalable quantum computing are of
the order of 0.0001 or lower. Experimentally proving such low errors is
challenging. We describe a randomized benchmarking method that yields estimates
of the computationally relevant errors without relying on accurate state
preparation and measurement. Since it involves long sequences of randomly
chosen gates, it also verifies that error behavior is stable when used in long
computations. We implemented randomized benchmarking on trapped atomic ion
qubits, establishing a one-qubit error probability per randomized pi/2 pulse of
0.00482(17) in a particular experiment. We expect this error probability to be
readily improved with straightforward technical modifications.Comment: 13 page
Using ion production to monitor the birth and death of a metastable helium Bose-Einstein condensate
We discuss observations of the ion flux from a cloud of trapped metastable
helium atoms. Both Bose-Einstein condensates and thermal clouds were
investigated. The ion flux is compared to time-of-flight observations of the
expanded cloud. We show data concerning BEC formation and decay, as well as
measurements of two- and three-body ionization rate constants. We also discuss
possible improvements and extensions of our results.Comment: 14 pages, 9 figures, submitted to Journal of Optics B (special issue,
cold quantum gases
- …