768 research outputs found

    Michaelis-Menten Relations for Complex Enzymatic Networks

    Full text link
    All biological processes are controlled by complex systems of enzymatic chemical reactions. Although the majority of enzymatic networks have very elaborate structures, there are many experimental observations indicating that some turnover rates still follow a simple Michaelis-Menten relation with a hyperbolic dependence on a substrate concentration. The original Michaelis-Menten mechanism has been derived as a steady-state approximation for a single-pathway enzymatic chain. The validity of this mechanism for many complex enzymatic systems is surprising. To determine general conditions when this relation might be observed in experiments, enzymatic networks consisting of coupled parallel pathways are investigated theoretically. It is found that the Michaelis-Menten equation is satisfied for specific relations between chemical rates, and it also corresponds to the situation with no fluxes between parallel pathways. Our results are illustrated for simple models. The importance of the Michaelis-Menten relationship and derived criteria for single-molecule experimental studies of enzymatic processes are discussed.Comment: 10 pages, 4 figure

    Passive Scalar: Scaling Exponents and Realizability

    Get PDF
    An isotropic passive scalar field TT advected by a rapidly-varying velocity field is studied. The tail of the probability distribution P(θ,r)P(\theta,r) for the difference θ\theta in TT across an inertial-range distance rr is found to be Gaussian. Scaling exponents of moments of θ\theta increase as n\sqrt{n} or faster at large order nn, if a mean dissipation conditioned on θ\theta is a nondecreasing function of θ|\theta|. The P(θ,r)P(\theta,r) computed numerically under the so-called linear ansatz is found to be realizable. Some classes of gentle modifications of the linear ansatz are not realizable.Comment: Substantially revised to conform with published version. Revtex (4 pages) with 2 postscript figures. Send email to [email protected]

    Fragmentation of High-spin Particle-hole States in 26-Mg

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHy 87-1440

    Fragmentation of High-Spin Particle-Hole States in 26-Mg

    Get PDF
    This work was supported by the National Science Foundation Grants NSF PHY 78-22774 A03, NSF PHY 81-14339, and by Indiana Universit

    Unstable decay and state selection II

    Full text link
    The decay of unstable states when several metastable states are available for occupation is investigated using path-integral techniques. Specifically, a method is described which allows the probabilities with which the metastable states are occupied to be calculated by finding optimal paths, and fluctuations about them, in the weak noise limit. The method is illustrated on a system described by two coupled Langevin equations, which are found in the study of instabilities in fluid dynamics and superconductivity. The problem involves a subtle interplay between non-linearities and noise, and a naive approximation scheme which does not take this into account is shown to be unsatisfactory. The use of optimal paths is briefly reviewed and then applied to finding the conditional probability of ending up in one of the metastable states, having begun in the unstable state. There are several aspects of the calculation which distinguish it from most others involving optimal paths: (i) the paths do not begin and end on an attractor, and moreover, the final point is to a large extent arbitrary, (ii) the interplay between the fluctuations and the leading order contribution are at the heart of the method, and (iii) the final result involves quantities which are not exponentially small in the noise strength. This final result, which gives the probability of a particular state being selected in terms of the parameters of the dynamics, is remarkably simple and agrees well with the results of numerical simulations. The method should be applicable to similar problems in a number of other areas such as state selection in lasers, activationless chemical reactions and population dynamics in fluctuating environments.Comment: 28 pages, 6 figures. Accepted for publication in Phys. Rev.

    Fragmentation of High-Spin Particle-Hole States in 26-Mg

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    Alpha-decay branching ratios of near-threshold states in <sup>19</sup>Ne and the astrophysical rate of <sup>15</sup> O(α, γ )<sup>19</sup>Ne

    Get PDF
    The 15O(α,γ)19Ne reaction is one of two routes for breakout from the hot CNO cycles into the rp process in accreting neutron stars. Its astrophysical rate depends critically on the decay properties of excited states in 19Ne lying just above the 15O + α threshold. We have measured the α-decay branching ratios for these states using the p(21lNe,t)19Ne reaction at 43 MeV/u.</p
    corecore