10 research outputs found

    Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children

    Get PDF
    Children have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection rates and a substantially lower risk for developing severe coronavirus disease 2019 compared with adults. However, the molecular mechanisms underlying protection in younger age groups remain unknown. Here we characterize the single-cell transcriptional landscape in the upper airways of SARS-CoV-2-negative (n = 18) and age-matched SARS-CoV-2-positive (n = 24) children and corresponding samples from adults (n = 44), covering an age range of 4 weeks to 77 years. Children displayed higher basal expression of relevant pattern recognition receptors such as MDA5 (IFIH1) and RIG-I (DDX58) in upper airway epithelial cells, macrophages and dendritic cells, resulting in stronger innate antiviral responses upon SARS-CoV-2 infection than in adults. We further detected distinct immune cell subpopulations including KLRC1 (NKG2A)+ cytotoxic T cells and a CD8+ T cell population with a memory phenotype occurring predominantly in children. Our study provides evidence that the airway immune cells of children are primed for virus sensing, resulting in a stronger early innate antiviral response to SARS-CoV-2 infection than in adults

    Correlation of SHOX2 Gene Amplification and DNA Methylation in Lung Cancer Tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA methylation in the <it>SHOX2 </it>locus was previously used to reliably detect lung cancer in a group of critical controls, including 'cytologically negative' samples with no visible tumor cell content, at a high specificity based on the analysis of bronchial lavage samples. This study aimed to investigate, if the methylation correlates with <it>SHOX2 </it>gene expression and/or copy number alterations. An amplification of the <it>SHOX2 </it>gene locus together with the observed tumor-specific hypermethylation might explain the good performance of this marker in bronchial lavage samples.</p> <p>Methods</p> <p><it>SHOX2 </it>expression, gene copy number and DNA methylation were determined in lung tumor tissues and matched morphologically normal adjacent tissues (NAT) from 55 lung cancer patients. Quantitative HeavyMethyl (HM) real-time PCR was used to detect <it>SHOX2 </it>DNA methylation levels. <it>SHOX2 </it>expression was assayed with quantitative real-time PCR, and copy numbers alterations were measured with conventional real-time PCR and array CGH.</p> <p>Results</p> <p>A hypermethylation of the <it>SHOX2 </it>locus in tumor tissue as compared to the matched NAT from the same patient was detected in 96% of tumors from a group of 55 lung cancer patients. This correlated highly significantly with the frequent occurrence of copy number amplification (p < 0.0001), while the expression of the <it>SHOX2 </it>gene showed no difference.</p> <p>Conclusions</p> <p>Frequent gene amplification correlated with hypermethylation of the <it>SHOX2 </it>gene locus. This concerted effect qualifies <it>SHOX2 </it>DNA methylation as a biomarker for lung cancer diagnosis, especially when sensitive detection is needed, i.e. in bronchial lavage or blood samples.</p

    SHOX2 DNA Methylation is a Biomarker for the diagnosis of lung cancer based on bronchial aspirates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to show that SHOX2 DNA methylation is a tumor marker in patients with suspected lung cancer by using bronchial fluid aspirated during bronchoscopy. Such a biomarker would be clinically valuable, especially when, following the first bronchoscopy, a final diagnosis cannot be established by histology or cytology. A test with a low false positive rate can reduce the need for further invasive and costly procedures and ensure early treatment.</p> <p>Methods</p> <p>Marker discovery was carried out by differential methylation hybridization (DMH) and real-time PCR. The real-time PCR based HeavyMethyl technology was used for quantitative analysis of DNA methylation of SHOX2 using bronchial aspirates from two clinical centres in a case-control study. Fresh-frozen and Saccomanno-fixed samples were used to show the tumor marker performance in different sample types of clinical relevance.</p> <p>Results</p> <p>Valid measurements were obtained from a total of 523 patient samples (242 controls, 281 cases). DNA methylation of SHOX2 allowed to distinguish between malignant and benign lung disease, i.e. abscesses, infections, obstructive lung diseases, sarcoidosis, scleroderma, stenoses, at high specificity (68% sensitivity [95% CI 62-73%], 95% specificity [95% CI 91-97%]).</p> <p>Conclusions</p> <p>Hypermethylation of SHOX2 in bronchial aspirates appears to be a clinically useful tumor marker for identifying subjects with lung carcinoma, especially if histological and cytological findings after bronchoscopy are ambiguous.</p

    Global software engineering experience through international capstone project exchanges

    No full text
    Today it is very common for software systems to be built by teams located in more than one country. For example, a project team may be located in the US while the team lead resides in Sweden. How then should students be trained for this kind of work? Senior design or capstone projects offer students real-world hands-on experience but rarely while working internationally. One reason is that most instructors do not have international business contacts that allow them to find project sponsors in other countries. Another reason is the fear of having to invest a huge amount of time managing an international project. In this paper we present the general concepts related to “International Capstone Project Exchanges”, the basic model behind the exchanges (student teams are led by an industry sponsor residing in a different country) and several alternate models that have been used in practice. We will give examples from projects in the US, Germany, Sweden, Australia, and Colombia. We have extended the model beyond software projects to include engineering projects as well as marketing, and journalism. We conclude with a description of an International Capstone Project Exchange website that we have developed to aid any university in establishing their own international project exchange

    Sustainability in marketing: a systematic review unifying 20 years of theoretical and substantive contributions (1997–2016)

    No full text
    corecore