137 research outputs found
Polarons in semiconductor quantum-dots and their role in the quantum kinetics of carrier relaxation
While time-dependent perturbation theory shows inefficient carrier-phonon
scattering in semiconductor quantum dots, we demonstrate that a quantum kinetic
description of carrier-phonon interaction predicts fast carrier capture and
relaxation. The considered processes do not fulfill energy conservation in
terms of free-carrier energies because polar coupling of localized quantum-dot
states strongly modifies this picture.Comment: 6 pages, 6 figures, accepted for publication in Phys.Rev.
Influence of carrier-carrier and carrier-phonon correlations on optical absorption and gain in quantum-dot systems
A microscopic theory is used to study the optical properties of semiconductor
quantum dots. The dephasing of a coherent excitation and line-shifts of the
interband transitions due to carrier-carrier Coulomb interaction and
carrier-phonon interaction are determined from a quantum kinetic treatment of
correlation processes. We investigate the density dependence of both mechanisms
and clarify the importance of various dephasing channels involving the
localized and delocalized states of the system.Comment: 12 pages, 10 figure
Relaxation properties of the quantum kinetics of carrier-LO-phonon interaction in quantum wells and quantum dots
The time evolution of optically excited carriers in semiconductor quantum
wells and quantum dots is analyzed for their interaction with LO-phonons. Both
the full two-time Green's function formalism and the one-time approximation
provided by the generalized Kadanoff-Baym ansatz are considered, in order to
compare their description of relaxation processes. It is shown that the
two-time quantum kinetics leads to thermalization in all the examined cases,
which is not the case for the one-time approach in the intermediate-coupling
regime, even though it provides convergence to a steady state. The
thermalization criterion used is the Kubo-Martin-Schwinger condition.Comment: 7 pages, 8 figures, accepted for publication in Phys. Rev.
Excitation-induced energy shifts in the optical gain spectra of InN quantum dots
A microscopic theory for the optical absorption and gain spectra of InN quantum-dot systems is used to study the combined influence of material properties and interaction-induced effects. Atomistic tight-binding calculations for the single-particle properties of the self-assembled quantum-dot and wetting-layer system are used in conjunction with a many-body description of Coulomb interaction and carrier phonon interaction. We analyze the carrier-density and temperature dependence of strong excitation-induced energy shifts of the dipole-allowed quantum-dot transitions.(C) 2009 American Institute of Physics. (10.1063/1.3213543
Diacylglycerol-Stimulated Endocytosis of Transferrin in Trypanosomatids Is Dependent on Tyrosine Kinase Activity
Small molecule regulation of cell function is an understudied area of trypanosomatid biology. In Trypanosoma brucei diacylglycerol (DAG) stimulates endocytosis of transferrin (Tf). However, it is not known whether other trypanosomatidae respond similarly to the lipid. Further, the biochemical pathways involved in DAG signaling to the endocytic system in T. brucei are unknown, as the parasite genome does not encode canonical DAG receptors (e.g. C1-domains). We established that DAG stimulates endocytosis of Tf in Leishmania major, and we evaluated possible effector enzymes in the pathway with multiple approaches. First, a heterologously expressed glycosylphosphatidylinositol phospholipase C (GPI-PLC) activated endocytosis of Tf 300% in L. major. Second, exogenous phorbol ester and DAGs promoted Tf endocytosis in L. major. In search of possible effectors of DAG signaling, we discovered a novel C1-like domain (i.e. C1_5) in trypanosomatids, and we identified protein Tyr kinases (PTKs) linked with C1_5 domains in T. brucei, T. cruzi, and L. major. Consequently, we hypothesized that trypanosome PTKs might be effector enzymes for DAG signaling. General uptake of Tf was reduced by inhibitors of either Ser/Thr or Tyr kinases. However, DAG-stimulated endocytosis of Tf was blocked only by an inhibitor of PTKs, in both T. brucei and L. major. We conclude that (i) DAG activates Tf endocytosis in L. major, and that (ii) PTKs are effectors of DAG-stimulated endocytosis of Tf in trypanosomatids. DAG-stimulated endocytosis of Tf may be a T. brucei adaptation to compete effectively with host cells for vertebrate Tf in blood, since DAG does not enhance endocytosis of Tf in human cells
Trichomonas Transmembrane Cyclases Result from Massive Gene Duplication and Concomitant Development of Pseudogenes
Trichomonas vaginalis is the only medically important protist (single-cell eukaryote) that is sexually transmitted. The ∼160-Mb Trichomonas genome contains more predicted protein-encoding genes (∼60,000) than the human genome. To begin to understand why there are so many copies of some genes, we chose here to study a large family of genes encoding unique transmembrane cyclases. Our most important results include the following. More than 100 transmembrane cyclase genes do not result from chromosomal duplications, because for the most part only the coding regions of the genes, rather than flanking sequences, are duplicated. Almost half of the transmembrane cyclase genes are pseudogenes, and these pseudogenes are polymorphic among laboratory strains of Trichomonas. Messenger RNAs for numerous transmembrane cyclases are expressed simultaneously, and representative cyclase domains have adenylyl cyclase activity. In summary, the large family of Trichomonas genes encoding transmembrane adenylyl cyclases results from massive gene duplication and concomitant development of pseudogenes
- …